首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel bacterial strain HS0904 was isolated from a soil sample using 3,5-bis(trifluoromethyl) acetophenone as the sole carbon source. This bacterial isolate can asymmetrically reduce 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol with high enantiometric excess (ee) value. Based on its morphological, physiological characteristics, Biolog, 16S rDNA sequence and phylogenetic analysis, strain HS0904 was identified as Leifsonia xyli HS0904. To our knowledge, this is the first reported case on the species L. xyli exhibited R-stereospecific carbonyl reductase and used for the preparation of chiral (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. The optimization of parameters for microbial transformation of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol catalyzed by whole cells of L. xyli HS0904 was carried out by examining some key factors including buffer pH, reaction temperature, shaking speed, substrate concentration, and reaction time. The obtained optimized conditions for the bioreduction are as follows: buffer pH 8.0, 70 mM of 3,5-bis(trifluoromethyl) acetophenone, 100 g l−1 of glucose as co-substrate, 200 g l−1 of resting cells as biocatalyst, reaction for 30 h at 30 °C and 200 rpm. Under above conditions, 99.4% of product ee and best yield of 62% were obtained, respectively. The results indicated that isolate L. xyli HS0904 is a novel potential biocatalyst for the production of (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.  相似文献   

2.
Leifsonia xyli HS0904 can stereoselectively catalyze the bioreduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to its corresponding alcohol, which is a valuable chiral intermediate in the pharmaceuticals. In this study, a new carbonyl reductase derived from L. xyli HS0904 was purified and its biochemical properties were determined in detail. The carbonyl reductase was purified by 530-fold with a specific activity of 13.2 U mg−1 and found to be a homodimer with a molecular mass of 49 kDa, in which the subunit molecular-weight was about 24 kDa. The purified enzyme exhibited a maximum enzyme activity at 34 °C and pH 7.2, and retained over 90% of its initial activity at 4 °C and pH 7.0 for 24 h. The addition of various additives, such as Ca2+, Mg2+, Mn2+, l-cysteine, l-glutathione, urea, PEG 1000 and PEG 4000, could enhance the enzyme activity. The maximal reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) of the purified carbonyl reductase for BTAP and NADH were confirmed as 33.9 U mg−1, 0.383 mM and 69.9 U mg−1, 0.412 mM, respectively. Furthermore, this enzyme was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters.  相似文献   

3.
This paper constitutes the first report on the Alr1105 of Anabaena sp. PCC7120 which functions as arsenate reductase and phosphatase and offers tolerance against oxidative and other abiotic stresses in the alr1105 transformed Escherichia coli. The bonafide of 40.8 kDa recombinant GST+Alr1105 fusion protein was confirmed by immunoblotting. The purified Alr1105 protein (mw 14.8 kDa) possessed strong arsenate reductase (Km 16.0 ± 1.2 mM and Vmax 5.6 ± 0.31 μmol min?1 mg protein?1) and phosphatase activity (Km 27.38 ± 3.1 mM and Vmax 0.077 ± 0.005 μmol min?1 mg protein?1) at an optimum temperature 37 °C and 6.5 pH. Native Alr1105 was found as a monomeric protein in contrast to its homologous Synechocystis ArsC protein. Expression of Alr1105 enhanced the arsenic tolerance in the arsenate reductase mutant E. coli WC3110 (?arsC) and rendered better growth than the wild type W3110 up to 40 mM As (V). Notwithstanding above, the recombinant E. coli strain when exposed to CdCl2, ZnSO4, NiCl2, CoCl2, CuCl2, heat, UV-B and carbofuron showed increase in growth over the wild type and mutant E. coli transformed with the empty vector. Furthermore, an enhanced growth of the recombinant E. coli in the presence of oxidative stress producing chemicals (MV, PMS and H2O2), suggested its protective role against these stresses. Appreciable expression of alr1105 gene as measured by qRT-PCR at different time points under selected stresses reconfirmed its role in stress tolerance. Thus the Alr1105 of Anabaena sp. PCC7120 functions as an arsenate reductase and possess novel properties different from the arsenate reductases known so far.  相似文献   

4.
(R)-[3,5-bis(trifluoromethyl)phenyl] ethanol is a crucial intermediate for the synthesis of Aprepitant. An efficient biocatalytic process for (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by whole cells of newly isolated Trichoderma asperellum ZJPH0810 using ethanol and glycerol as dual cosubstrate for cofactor recycling. A fungal strain ZJPH0810, showing asymmetric biocatalytic activity of 3,5-bis(trifluoromethyl) acetophenone to its corresponding (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, was isolated from a soil sample. Based on its morphological and physiological characteristics and internal transcribed spacer sequence, this isolate was identified as T. asperellum ZJPH0810, which afforded an NADH-dependent (R)-stereospecific carbonyl reductase and was a promising biocatalyst for the synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Some key reaction parameters involved in the bioreduction catalyzed by T. asperellum ZJPH0810 were subsequently optimized. The effectiveness of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol production was significantly enhanced by employing a novel dual cosubstrate-coupled system for cofactor recycling. The established efficient bioreduction system contained 50 mM of 3,5-bis(trifluoromethyl) acetophenone and 60 g l?1 of resting cells, employing ethanol (6.0 %, v/v) and glycerol (0.5 %, v/v) as dual cosubstrate. The bioreduction was performed in distilled water medium, at 30 °C and 200 rpm. Under the above conditions, a best yield of 93.4 % was obtained, which is nearly a 3.5-fold increase in contrast to no addition of cosubstrate. The ee value of the product reached above 98 %. This biocatalytic process shows great potential in the production of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, a valuable chiral building block in the pharmaceutical industry.  相似文献   

5.
(R)-3-Hydroxypentanenitrile (HPN) is an important intermediate in the synthesis of an immunosuppressive inosine 5′-monophosphate dehydrogenase inhibitor. An efficient enzymatic procedure for the synthesis of (R)-HPN with over 99 % enantiomeric excess using a novel acetoacetyl-CoA reductase (AdKR) from Achromobacter denitrificans was successfully established. Many microorganisms are known to reduce 3-oxopentannitrile (KPN) to (R)-HPN. An enzyme from A. denitrificans partially purified using ion exchange chromatography reduced KPN to (R)-HPN with high enantioselectivity. The AdKR gene was cloned and sequenced and found to comprise 738 bp and encode a polypeptide of 26,399 Da. The deduced amino acid sequence showed a high degree of similarity to those of other putative acetoacetyl-CoA reductases and putative 3-ketoacyl-ACP reductases. The AdKR gene was singly expressed and coexpressed together with a glucose dehydrogenase (GDH) as a coenzyme regenerator in Escherichia coli under the control of the lac promoter. (R)-HPN was synthesized with over 99 % e.e. using a cell-free extract of recombinant E. coli cells coexpressing AdKR and GDH.  相似文献   

6.
A strain NQ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-BTPE), which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological and internal transcribed spacer sequence, the strain NQ1 was identified to be Rhodotorula mucilaginosa NQ1. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of R. mucilaginosa NQ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-BTPE were determined to be as follows: 5·0 ml phosphate buffer (200 mmol l−1, pH 7·0), 80 mmol l−1 of BTAP, 250 g (wet weight) l−1 of resting cell, 35 g l−1 of glucose and a reaction for 18 h at 30°C and 180 rev min−1. The strain NQ1 exhibited a best yield of 99% and an excellent enantiomeric excess of 99% for the preparation of (S)-BTPE under the above optimal conditions, and could also asymmetrically reduce a variety of bulky prochiral carbonyl compounds to their corresponding optical hydroxyl compound with excellent enantioselectivity. These results indicated that R. mucilaginosa NQ1 had a good capacity to reduce BTAP to its corresponding (S)-BTPE, and might be a new potential biocatalyst for the production of valuable chiral hydroxyl compounds in industry.  相似文献   

7.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

8.
The Sphingopyxis sp. 113P3 gene oph, encoding oxidized polyvinyl alcohol hydrolase (OPH), was optimized with the preferred codons of Pichia pastoris and ligated into the pPIC9K vector behind the α-factor signal sequence. The vector was then transfected into P. pastoris GS115 and genomic integration was confirmed. Large-scale production of recombinant protein was performed by induction with 14.4 g/L methanol at 22 °C in a 3-L bioreactor. The maximal OPH activity obtained was 68.4 U/mL, which is the highest activity reported. The optimal pH and temperature of recombinant OPH were 8.0 and 45 °C, respectively. OPH activity was stable over a pH range of 5.0–8.5, and at a maximal temperature of 45 °C. The K cat /K m of recombinant OPH was 598 mM?1 s?1, which was 4.27-fold higher than that of recombinant OPH derived from Escherichia coli. The improved catalytic efficiency of OPH expressed in recombinant P. pastoris makes it favorable for industrial applications.  相似文献   

9.
A potential novel fumarate reductase gene designated frd1A was isolated by screening a marine metagenomic library through a sequence-based strategy. Sequence analyses indicated that Frd1A and other putative fumarate reductases were closely related. The putative fumarate reductase gene was subcloned into a pETBlue-2 vector and expressed in Escherichia coli Tuner(DE3)pLac? cells. The recombinant protein was purified to homogeneity. Functional characterization by high-performance liquid chromatography demonstrated that the recombinant Frd1A protein could catalyze the hydrogenation of fumarate to succinate acid. The Frd1A protein displayed an optimal activity at pH 7.0 and 28 °C, which could be stimulated by adding metal ions such as Zn2+ and Mg2+. The Frd1A enzyme showed a comparable affinity and catalytic efficiency under optimal reaction conditions: k m?=0.227 mmol/L, v max= 29.9 U/mg, and k cat/k m=5.44?×?104 per mol/s. The identification of Frd1A protein underscores the potential of marine metagenome screening for novel biomolecules.  相似文献   

10.
To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01–0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date.  相似文献   

11.
12.
Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s?1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s?1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM?1 s?1) and M12 GOx (26.7 mM?1 s?1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.  相似文献   

13.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   

14.
Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80 %) and Medicago truncatula (79 %). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 °C and is very thermostable with an inactivation energy of 468 kJ mol-1. The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni2+, Cu2+, Fe2+, or Co2+. By adding 0.1 % Triton X-100, the enzyme activity could be significantly increased up to 340 %. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s-1 for (R)-pNSO and 5.5 mM and 6.2 s-1 for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.  相似文献   

15.
Phenolic acid decarboxylase (PAD) catalyzes the non-oxidative decarboxylation of p-coumaric acid (pCA) to p-hydroxystyrene (pHS). PAD from Bacillus amyloliquefaciens (BAPAD), which showed k cat/K m value for pCA (9.3?×?103?mM?1?s?1), was found as the most active one using the “Subgrouping Automata” program and by comparing enzyme activity. However, the production of pHS of recombinant Escherichia coli harboring BAPAD showed only a 22.7 % conversion yield due to product inhibition. Based on the partition coefficient of pHS and biocompatibility of the cell, 1-octanol was selected for the biphasic reaction. The conversion yield increased up to 98.0 % and 0.83 g/h/g DCW productivity was achieved at 100 mM pCA using equal volume of 1-octanol as an organic solvent. In the optimized biphasic reactor, using a three volume ratio of 1-octanol to phosphate buffer phase (50 mM, pH 7.0), the recombinant E. coli produced pHS with a 88.7 % conversion yield and 1.34 g/h/g DCW productivity at 300 mM pCA.  相似文献   

16.
In order to produce enantiomerically pure epoxides for the synthesis of value-added chemicals, a novel putative epoxide hydrolase (EH) sgeh was cloned and overexpressed in pET28a/Escherichia coli BL21(DE3). The 1047 bp sgeh gene was mined from Streptomyces griseus NBRC 13350 genome sequence. The recombinant hexahistidyl-tagged SGEH was purified (16.6-fold) by immobilized metal-affinity chromatography, with 90% yield as a homodimer of 100 kDa. The recombinant E. coli whole cells overexpressing SGEH could kinetically resolve racemic phenyl glycidyl ether (PGE) into (R)-PGE with 98% ee, 40% yield, and enantiomeric ratio (E) of 20. This was achieved under the optimized reaction conditions i.e. cell/substrate ratio of 20:1 (w/w) at pH 7.5 and 20?°C in 10% (v/v) dimethylformamide (DMF) in a 10 h reaction. 99% enantiopure (R)-PGE was obtained when the reaction time was prolonged to 12 h with a yield of 34%. In conclusion, an economically viable and environment friendly green process for the production of enantiopure (R)-PGE was developed by using wet cells of E. coli expressing recombinant SGEH.  相似文献   

17.
Aldose reductases are key enzymes in the detoxification of reactive aldehyde compounds like methylglyoxal (MG) and malondialdehyde. The present study describes for first time the preliminary biochemical and structural characterization of the aldose reductase (ALDRXV4) enzyme from the resurrection plant Xerophyta viscosa. The ALDRXV4 cDNA was expressed in E. coli using pET28a expression vector, and the protein was purified using affinity chromatography. The recombinant protein showed a molecular mass of ~36 kDa. The K M (1.2 mM) and k cat (14.5 s?1) of the protein determined using MG as substrate was found to be comparable with other reported homologs. Three-dimensional structure prediction based on homology modeling suggested several similarities with the other aldose reductases reported from plants. Circular dichroism spectroscopy results supported the bioinformatic prediction of alpha–beta helix nature of aldose reductase proteins. Subcellular localization studies revealed that the ALDRXV4-GFP fusion protein was localized both in the nucleus and the cytoplasm. The E. coli cells overexpressing ALDRXV4 exhibited improved growth and showed tolerance against diverse abiotic stresses induced by high salt (500 mM NaCl), osmoticum (10 % PEG 6000), heavy metal (20 mM CdCl2), and MG (5 mM). Based on these results, we propose that ALDRXV4 gene from X. viscosa could be a potential candidate for developing stress-tolerant crop plants.  相似文献   

18.
t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an important chiral diol synthon of atorvastatin calcium. Previously, we constructed a variant KmAKR-W297H (M1) of Kluyveromyces marxianus aldo-keto reductase (KmAKR, designated as M0), possessing excellent diastereoselectivity but moderate activity towards t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1). In this work, KmAKR-W297H/Y296W/K29H (M3) was developed via semi-rational design. It exhibited much improved catalytic efficiency towards (5R)-1. The Km values of M3 for NADPH and (5R)-1 were 0.15 mmol/L and 1.41 mmol/L, and the maximal reaction rate vmax was 55.56 μmol/min/mg. Compared with M1, the catalytic efficiency kcat/Km of M3 was increased 2.64-fold. Coupled with Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, M3 took 3.5 h to completely reduce (5R)-1 at up to 100.0 g/L, producing 237.4 mmol/L (3R,5R)-2 in d.e.P value above 99.5%. The space-time yield (STY) of M3-catalyzed (3R,5R)-2 synthesis was 372.8 g/L/d.  相似文献   

19.
The cDNA gene coding for formate dehydrogenase (FDH) from Ogataea parapolymorpha DL-1 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by nickel affinity chromatography and was characterized as a homodimer composed of two identical subunits with approximately 40 kDa in each monomer. The enzyme showed wide pH optimum of catalytic activity from pH 6.0 to 7.0. It had relatively high optimum temperature at 65 °C and retained 93, 88, 83, and 71 % of its initial activity after 4 h of exposure at 40, 50, 55, and 60 °C, respectively, suggesting that this enzyme had promising thermal stability. In addition, the enzyme was characterized to have significant tolerance ability to organic solvents such as dimethyl sulfoxide, n-butanol, and n-hexane. The Michaelis–Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values of the enzyme for the substrate sodium formate were estimated to be 0.82 mM, 2.32 s?1, and 2.83 mM?1 s?1, respectively. The K m for NAD+ was 83 μM. Due to its wide pH optimum, promising thermostability, and high organic solvent tolerance, O. parapolymorpha FDH may be a good NADH regeneration catalyst candidate.  相似文献   

20.
The gene coding for ribose-5-phosphate isomerase (Rpi) from Thermotoga lettingae TMO was cloned and expressed in E. coli. The recombinant enzyme was purified by Ni-affinity chromatography. It converted d-psicose to d-allose maximally at 75 °C and pH 8.0 with a 32 % conversion yield. The k m, turnover number (k cat), and catalytic efficiency (k cat k m ?1 ) for substrate d-psicose were 64 mM, 6.98 min?1 and 0.11 mM?1 min?1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号