首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rehmannia glutinosa Libosch., a valuable medicinal plant, was successfully propagated in vitro using shoot tip explants. Shoot multiplication was performed in glass tubes and in a nutrient sprinkle bioreactor. A mixture of 0.1 mg L?1 indole-3-acetic acid (IAA) and 1.0 mg L?1 of 6-benzylaminopurine in Murashige and Skoog (MS) agar-solidified medium proved the best combination for multiple shoot induction, yielding 8.2 shoots per explant after 4 weeks of culture in glass tubes. The number of shoots increased to 21 per explant when the same combination of growth regulators was used in a nutrient sprinkle bioreactor. The shoots rooted with a frequency of 93 % after 6 weeks of culture on MS agar medium supplemented with IAA (0.1 mg L?1) before being acclimatized in the greenhouse. The antioxidant activities of methanolic extracts from the leaves and roots of the in vitro-regenerated plants of R. glutinosa cultivated in the greenhouse were evaluated using four in vitro assays: scavenging of free radicals (DPPH and ABTS), transition metal reduction and total antioxidant activity phosphomolybdenum test. In all cases, the methanolic extract from leaves demonstrated better antioxidant activity than those taken from roots. A strong correlation was found between total phenolic and flavonoid content, and the antioxidant capacity of the studied extracts.  相似文献   

2.
Cichorium pumilum, a member of Asteraceae, is widely used as a traditional medicinal herb. An efficient protocol for callus formation and whole plant propagation has been developed. Callus cultures were induced from leaf explants on Murashige and Skoog (MS) medium supplemented with 1.5?mg?l?1 6-Benzyladenine (BA) and 0.5?mg?l?1 Naphthalene acetic acid (NAA). Maximum numbers of shoots were obtained from calli transferred to shoot regeneration medium containing MS basal medium with 1.5?mg?l?1 BA or Kinetin (Kin). The shoots were effectively rooted on MS medium supplemented with different concentrations of Indole-3-butyric acid. In the present study, the antibacterial activity of C. pumilum extracts was assayed in vitro by agar disc diffusion and agar well diffusion methods against 10 different bacterial species. The results showed effect on the growth of 50 and 70% of the tested bacterial species using methanol and ethanol extracts respectively. Klebsiella pneumoniae was susceptible to the ethanolic and methanolic extracts of wild plants and in vitro tissues, whereas Enterococcus faecalis was resistant to all the extracts. This study verified that the methanol extracts have strong antioxidant activities with high levels of phenolic compounds. The antioxidant activity and total phenol content of callus cultures and in vitro plantlets were lower than those of the wild plants. The results obtained confirm the therapeutic potency of Cichorium used in the traditional medicine, in addition, the efficient in vitro production system developed in this study provide sterile and consistent tissues for the investigation of phytochemical and pharmacological effects and germplasm conservation of C. pumilum.  相似文献   

3.
A rapid and efficient in vitro propagation protocol by enhanced multiple shoot proliferation from internode cultures of Ruta graveolens was established. Mean shoot number was maximum (55.83) in Murashige and Skoog (MS) basal medium fortified with 1.0 mg L?1 benzyl amino purine and 0.25 mg L?1 indole-3-acetic acid. The elongated shoots rooted within 10–12 days in 1/2-strength MS medium supplemented with 2.0 mg L?1 indole 3-butyric acid. About 80 % of the rooted plantlets survived acclimatization and transfer to the field. Phytochemical analysis revealed that micropropagated plants produced linear furanocoumarins, characteristic of the species, in greater quantities as compared to the in vivo-grown plants. The results will facilitate the conservation of this valuable medicinal plant and to obtain plants with improved phytochemical constituents.  相似文献   

4.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

5.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

6.
The content of total phenolic compounds and flavonoids was determined in methanol extracts of root, stem, leaves, and inflorescences from wild growing and greenhouse cultivated plants of Castilleja tenuiflora. The antioxidant activity in each extract was evaluated using three in vitro models: scavenging of free radicals with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and reducing power by the phosphomolybdenum assay. Both, antioxidant activity and phytochemicals content were influenced significantly (P < 0.05) by the source of the plant material and the organ. Cultivated plants had the highest content of phenolic compounds (37.95 mg gallic acid equiv. g?1 dry weight, P < 0.05) and the strongest antioxidant activity. Total phenolic compounds content correlated significantly with the antioxidant activity for all studied plant material and organs (P < 0.05). TLC profile using DPPH as a detection reagent indicated that the phenylethanoids verbascoside and isoverbascoside are the main contributors to the free-radical scavenging of C. tenuiflora. Cultivated plants of C. tenuiflora are an alternative source of natural antioxidants to wild growing plants. The antioxidant properties of C. tenuiflora may be associated with its traditional use to treat conditions consistent with radical-related diseases (e.g. inflammation, tumors).  相似文献   

7.
An efficient and reproducible two-step in vitro propagation system for tomato (Lycopersicon esculentum) was developed by using the combinations of seaweed biostimulant (Gracilaria edulis and Sargassum wightii) extracts and plant growth regulators (PGRs). Double cotyledonary nodal (DCN) explants of Co-3 cultivar were initially cultured on Murashige and Skoog (MS) and Gamborg’s medium (B5) containing thidiazuron (TDZ) and 6-benzylaminopurine (BA); the best responding cytokinin was tested in combinations with different auxins (NAA, IAA and IBA), and seaweed extracts (G. edulis and S. wightii) of about basal MS medium +10–70% was used for shoot proliferation. The best organogenic culture response was obtained on MS medium fortified with 1.5 mg L?1 TDZ and 1.5 mg L?1 IBA. Up to 24 shoots per explants were formed at an optimal duration of exposure to 35 days. Mini shoots of about 3–4 cm were transferred to medium supplemented with MS + iP, MS + zeatin, MS + G. edulis and MS + S. wightii at different concentrations. High frequency of shoot elongation was observed in the medium supplemented with 30% G. edulis (15.2 cm), and profuse rooting was observed in the medium supplemented with 50% S. wightii of about 16.1 cm. Shoot elongation and rooting were observed in the medium supplemented with seaweed extracts. The plantlets were transferred to the plant growth chamber (70% of relative humidity and 9 light cycles) and maintained in it for a week, and then they were transferred to a greenhouse condition. The plant growth chamber to green house transferred plantlets showed an increase in the survival rate from 70 to 85%. Thus a two-step regeneration protocol was developed in this study with a combination of seaweed extracts and PGRs, which provides a basis for the production of transgenics with high frequency and survivability of tomato plants.  相似文献   

8.
Swertia corymbosa (Griseb.) Wight ex C. B. Clarke, a valuable medicinal plant, has been investigated for its regeneration potential using nodal explants. Out of a range of concentrations of cytokinins [6-benzyl adenine (BA), 6-furfurylaminopurine (Kn), 2-isopentenyl adenine (2iP), thidiazuron (TDZ), and zeatin (Z)] used as supplements with MS, BA at 4.40 μM concentration proved best for multiple shoot induction yielding 26.50 ± 0.26 shoots after 12 weeks of culture. Addition of low concentration of NAA (1.3 μM) in MS medium supplemented with the cytokinin BA (4.40 μM) favoured shoot multiplication. A mean number of 35.78 ± 0.81 shoots were produced per explant. Additive effect of BA (4.40 μM) in combination with Kn (4.64 μM) produced highest number of shoots (83.20 ± 4.29). Addition of GA3 (1.4 μM) to the above medium not only favored shoot elongation but also enhanced the number of shoots (113.98 ± 3.80). The microshoots were rooted successfully on half-strength MS medium supplemented with 9.8 μM of IBA. The plantlets were successfully transferred to hardening medium containing vermiculite with 87 % survival rate. Screening of the antibacterial, antioxidant activity and estimation of total phenolic and flavonoid content of methanolic extracts of micropropagated plants were also carried out and compared with that of the wild-grown plants. In all the tests, methanolic extract from wild-grown plants showed higher antioxidant, antimicrobial activity, total phenolic and flavonoid content than in vitro propagated plants. The content of secondary metabolites in wild-grown plants and in vitro propagated plants was determined by HPLC coupled with ESI-MS and the presence of loganic acid, swertiamarin, sweroside, gentiopicroside, isovitexin, amoroswertin, amarogentin, gentiacaulein, decussatin, and swertianin in the samples were confirmed. Gentiopicroside (40.726 mg/g) and swertianin (29.598 mg/g) were found to be the major compounds which may be responsible for the antimicrobial and antioxidant activities. The results of the present study confirmed the therapeutic potency of S. corymbosa used in the traditional medicine; in addition, the protocol for in vitro production developed in the present study could be applied for mass multiplication and for the conservation of germplasm.  相似文献   

9.
An efficient large-scale clonal propagation protocol has been described for Withania somnifera (L.) Dunal, a valuable medicinal plant, using cotyledonary nodes derived from axenic seedlings. Murashige and Skoog’s (Physiol Plant 15:473–497, 1962) (MS) medium supplemented with 1.0 mg l?1 N 6-benzyladenine (BA) was found to be optimum for production of multiple shoots (100 % shoot proliferation frequency and 16.93 shoots per explant). Successive shoot cultures were established by repeatedly sub-culturing the original cotyledonary node on a fresh medium after each harvest of newly formed shoots. Multiple shoot proliferation was also achieved from nodal segments derived from in vitro raised shoots on MS medium augmented with 1.0 mg l?1 BA. Regenerated shoots were best rooted (95.2 %, 38.7 roots per shoot) in half-strength MS medium supplemented with 1.0 mg l?1 indole-3-butyric acid. The plantlets were successfully acclimated and established in soil. Random amplified polymorphic DNA and inter-simple sequence repeats analysis revealed a homogeneous amplification profile for all micropropagated plants analyzed validating the genetic fidelity of the in vitro regenerated plants.  相似文献   

10.
A rapid micropropagation system for Scabiosa tschiliensis Grunning, an ethnic medicinal plant, has been developed. Calluses were induced from leaf and petiole explants on Murashige and Skoog (MS) medium supplemented with 2.0 mg l?1 thidiazuron and 0.5 mg l?1 2,4-dicholorophenoxyacetic acid. In this medium, callus induction rate was about 94.05 %. Adventitious shoots developed from leaf (86.30 %) and petiole (83.33 %) calluses when cultured on MS medium containing 4.0 or 2.0 mg l?1 N6-benzyladenine (BA), respectively. Up to 73.85 % of the regenerated shoots formed complete plantlets on MS medium supplemented with 2.0 mg l?1 indole-3-butyric acid, with an average of 3.25 roots per shoot. Quantitative analysis of flavonoids showed that the phytochemical profiles of calluses and regenerated plants were similar to that of wild-type plants. The 2, 2-diphenyl-1-picrylhydrazyl assay revealed that the flavonoid extracts of calluses, adventitious shoots and wild-type plants had stronger antioxidant activities, the inhibitory concentrations being 23.944, 31.329 and 26.502 μg ml?1, respectively, where 50 % of DPPH was scavenged (IC50). Results showed that this perennial herb could be used as a potential source of new natural antioxidants.  相似文献   

11.
A micropropagation system for Bauhinia racemosa Lam. was developed involving axillary shoot proliferation and ex vitro rooting using nodal explants obtained from mature tree. MS medium with 3.0 mg l?1 BA (6-benzyladenine) was optimum for shoot bud induction. For shoot multiplication, mother explants were transferred repeatedly on medium containing low concentration of BA (0.75 mg l?1). Number of shoots was increased up to two passages and decreased thereafter. Shoot multiplication was further enhanced on MS medium containing 0.25 mg l?1 each of BA and Kin (Kinetin) with 0.1 mg l?1 of NAA (α-naphthalene acetic acid). Addition of 0.004 mg l?1 TDZ (thidiazuron) increased the rate of shoot multiplication and 21.81 ± 1.26 shoots per culture vessel were obtained. In vitro regenerated shoots were rooted under ex vitro conditions treated with 400 mg l?1 IBA (indole-3-butyric acid) for 7 min on sterile soilrite. After successful hardening in greenhouse, ex vitro rooted plants were transferred to the field conditions with ≈85% of survival rate. Micromorphological changes were observed on leaf surface i.e. development of vein density and trichomes and stomatal appearance, when plants were subjected to environmental conditions. This is the first report on in vitro regeneration of B. racemosa from mature tree.  相似文献   

12.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

13.
Origanum vulgare L is commonly known as a wild marjoram and winter sweet which has been used in the traditional medicine due to its therapeutic effects as stimulant, anticancer, antioxidant, antibacterial, anti-inflammatory and many other diseases. A reliable gene transfer system via Agrobacterium rhizogenes and plant regeneration via hairy roots was established in O. vulgare for the first time. The frequency of induced hairy roots was different by modification of the co-cultivation medium elements after infection by Agrobacterium rhizogenes strains K599 and ATCC15834. High transformation frequency (91.3 %) was achieved by co-cultivation of explants with A. rhizogenes on modified (MS) medium. The frequency of calli induction with an 81.5 % was achieved from hairy roots on MS medium with 0.25 mg/L?1 2,4-D. For shoot induction, initiated calli was transferred into a medium containing various concentrations of BA (0.1, 0.25, 0.5, 0.75 and 1 mg/L?1). The frequency of shoot generation (85.18 %) was achieved in medium fortified with 0.25 mg/L?1 of BA. Shoots were placed on MS medium with 0.25 mg/l IBA for root induction. Roots appeared and induction rate was achieved after 15 days.  相似文献   

14.
An efficient protocol for the development of genetically uniform clones of a valuable medicinal plant Solanum trilobatum L. has been established. An optimal shoot regeneration response was observed in a modified Murashige and Skoog medium (M-MS) containing 25 mM ammonium nitrate, 2 mg l?1 6-benzyl adenine and 0.1 mg l?1 indole-3-acetic acid using in vitro derived node and shoot tip explants. Consequently, the multiple shoot buds were elongated in MS medium supplemented with 0.5 mg l?1 Gibberellic acid. The in vitro regenerated shoots were rooted best in MS medium containing 1.5 mg l?1 indole-3-butyric acid and successfully acclimatized in the field. The single primer amplification reaction (SPAR) approach, including random amplified polymorphic DNA, inter simple sequence repeats and directed amplification of minisatellite DNA regions markers did not identify any genetic polymorphism among in vitro regenerants. Similarly flow cytometry analysis illustrated that the DNA content and genome size of micropropagated plants were equivalent to that of intact plants from field. In addition, the accumulation of solasodine in micropropagated plants was confirmed by thin layer chromatography and further quantified by high performance liquid chromatography analysis as 2.47 mg g?1 DW which is comparable to field grown plants. Thus the protocol can be effectively exploited for commercial propagation of this species to obtain solasodine and also in genetic transformation studies.  相似文献   

15.
Phenolic acids, both benzoic and cinnamic acid derivatives, are plant metabolites with high therapeutic and cosmetic values. Methanolic extracts from the biomass of shoot and callus cultures of Aronia melanocarpa growing on seven variants of the Murashige and Skoog (MS) medium with different concentrations of plant growth regulators, BA and NAA, ranging from 0.1 to 3.0 mg l?1, were examined for the production of free phenolic acids and cinnamic acid using the high-performance liquid chromatography (HPLC) method. The extracts from the shoot and callus cultures were confirmed to contain five of the twelve compounds tested for: caffeic, p-coumaric, p-hydroxybenzoic, syringic and vanillic acids. The shoot extracts contained additionally salicylic acid. Both the total amounts and the amounts of individual compounds in either the shoot or callus extracts were dependent on the concentration of cytokinin and auxin in the MS medium variants. The total amounts in the shoot and callus cultures were in the range from 93.52 to 217.00 mg 100 g?1 DW and from 47.11 to 83.83 mg 100 g?1 DW, respectively. The amounts of individual compounds showed wide variation, from 1.31 to 91.86 mg 100 g?1 DW in the shoot extracts, and from 2.58 to 40.16 mg 100 g?1 DW in the callus extracts. Salicylic acid (max. 91.86 mg 100 g?1 DW), p-coumaric acid (max. 62.39 mg 100 g?1 DW) and p-hydroxybenzoic acid (max. 50.66 mg 100 g?1 DW) dominated in the shoot extracts, while syringic acid (max. 40.16 mg 100 g?1 DW) and p-hydroxybenzoic acid (max. 23.59 mg 100 g?1 DW) were the main metabolites in the callus extracts. This is the first report on the quantitative analysis of benzoic and cinnamic acid derivatives in shoot and callus cultures of A. melanocarpa growing on MS-based media with different concentrations of selected plant growth regulators—BA and NAA. The obtained maximum amounts of some metabolites are of interest from a practical perspective.  相似文献   

16.
Withania somnifera (L) Dunal, commonly known as ashwagandha or Indian ginseng, is the source of large number of pharmacologically active withanolides. Withaferin-A (WS-3), a major withanolide of W. somnifera, has been proven to be an effective anti-cancer molecule. In this study, a liquid culture system for shoot proliferation, biomass accumulation and withaferin-A production of an elite accession (AGB002) of W. somnifera was investigated. The nodal explants cultured on Murashige and Skoog (MS) semi-solid medium supplemented with various concentrations of 6-benzyl adenine (BA) and Kinetin (Kn) elicited varied responses. The highest number of regenerated shoots per ex-plant (35?±?3.25) and the maximum average shoot length (5.0?±?0.25 cm) were recorded on MS medium supplemented with BA (5.0 μM). The shoots were further proliferated in half and full strength MS liquid medium supplemented with the same concentration BA. It was interesting to note that shoots cultured on MS half strength liquid medium fortified with 4 gL-1 FW (fresh weight) shoot inoculum mass derived from 5 week old nodal explants of W. somnifera showed highest accumulation of biomass and withaferin A content in 5 weeks. Withaferin A was produced in relatively high amounts (1.30 % and 1.10 % DW) in shoots cultured in half and full strength MS liquid media respectively as compared to natural field grown plants (0.85 % DW). A considerable amount of the withaferin A was also excreted in the culture medium. Successful proliferation of shoots in liquid medium and the synthesis of withaferin A in vitro opens new avenues for bioreactor scale-up and the large-scale production of the compound.  相似文献   

17.
The flavonoid (baicalin, wogonoside, luteolin, luteolin-7-glucoside) and verbascoside contents of Scutellaria altissima in both shoot cultures, and the shoots and roots of micropropagated plants grown in the greenhouse for 12 weeks or in the field for 2 years were determined. The level of secondary metabolites was found to be strongly affected by the age and type of plant organ. A comparative analysis of S. altissima plants propagated in vitro and from seeds revealed no differences in the level of secondary metabolites when plants of the same age were studied. The antioxidant potential of methanolic extracts from shoot cultures, and the shoots and roots of S. altissima plants propagated in vitro, were evaluated using ABTS radical scavenging, FRAP metal reduction power and the lipid peroxidation test, in relation to the content of baicalin, wogonoside, verbascoside, total phenolic and total flavonoid compounds. Extracts from the roots of field-grown regenerated plants at the flowering stage were found to possess the strongest antioxidant activity. Correlation analysis revealed that the antioxidant activity of extracts correlated most closely with their total phenolic content estimated by the Folin-Ciocalteu method.  相似文献   

18.
We developed a micropropagation protocol for Cleome gynandra, a C4 model plant with medicinal importance. Surface-sterilized nodal segments obtained from 1 to 2-month-old field grown plant were used as explants for culture establishment and plant regeneration. Multiple shoots differentiated through bud breaking on Murashige and Skoog (MS) medium with different concentrations of benzyladenine (BA) and kinetin (Kin). The optimum shoot differentiation occurred on medium with 1.5 mg l?1 BA. Out of various concentrations and combinations of cytokinins and auxins, MS medium containing 0.5 mg l?1 BA and 0.1 mg l?1 IAA (indole-3-acetic acid) was found best for shoot multiplication. However, the differentiated shoots exhibited hyperhydration, leaf curling and early leaf fall during subculturing. To overcome these problems, regenerated shoots were transferred to the modified MS medium with reduced nitrates (825 mg l?1 NH4NO3 and 950 mg l?1 KNO3) and 100 mg l?1 (NH4)2SO4. The micropropagated shoots were rooted (i) in vitro on one-fourth strength of MS salts with 0.25 mg l?1 each of IBA (indole-3 butyric acid) and NOA (2-naphthoxyacetic acid) + 100 mg l?1 activated charcoal, and (ii) ex vitro, by treating the shoot base(s) with 200 mg l?1 of IBA for 3 min and transferred to soilrite moistened with one-fourth strength of MS macro salts in culture bottles. The plants were hardened in the greenhouse with 85 % survival rate. Micromorphological studies of the plants were conducted during hardening with reference to development and changes in vein spacing, glandular trichome and stomata. In comparison to leaves under in vitro condition, higher density of veins and glandular trichomes was observed in the leaves of hardened plants. In addition, stomata became functional during hardening which were non-functional under in vitro condition.  相似文献   

19.
A simple and efficient regeneration protocol was developed for watermelon from cotyledonary node explants excised from 7-day-old in vitro grown seedlings. This study describes the effect of amino acids and polyamines (PAs) along with plant growth regulators (PGRs) on multiple shoot induction and rooting. The highest number of multiple shoots (46.43 shoots/explant) was obtained from cotyledonary node and they were also elongated (6.3 cm/shoot) on MS medium supplemented with 1 mg l??1 N 6 –Benzyladenine (BA), 5 mg l??1 leucine, and 10 mg l??1 spermidine. The elongated shoots developed profuse roots (23.03 roots/shoot) in MS medium containing 1 mg l??1 indole-3-butyric acid (IBA), 5 mg l??1 isoleucine, and 10 mg l??1 putrescine. All the rooted plantlets were successfully hardened and acclimatized in the greenhouse with a survival rate of 98%. The present study described an efficient method to obtain a 1.5-fold increase in the number of shoots, compared with the available regeneration protocols for watermelon. The plants developed in this study showed fivefold higher photosynthetic pigments compared to the control plants. The genetic fidelity of the regenerated plants was evaluated by SCoT and RAPD marker analyses, and banding patterns confirmed the true-to-type nature of in vitro regenerated plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号