首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarizes our studies of the past several years on the development of third generation dendritic cell (DC) vaccines. These developments have implemented two major innovations in DC preparation: first, young DCs are prepared within 3 days and, second, the DCs are matured with the help of Toll-like receptor agonists, imbuing them with the capacity to produce bioactive IL-12 (p70). Based on phenotype, chemokine-directed migration, facility to process and present antigens, and stimulatory capacity to polarize Th1 responses in CD4+ T cells, induce antigen-specific CD8+ CTL and activate natural killer cells, these young mDCs display all the important properties needed for initiating good antitumor responses in a vaccine setting.  相似文献   

2.
3.
Acute myeloid leukemia (AML), the most common form of acute leukemia in adults, is characterized by abnormal proliferation and blocked maturation and differentiation of myeloid precursor cells. AML is an aggressive cancer that progresses rapidly without treatment. Therefore, effective treatment modalities should be implemented immediately after diagnosis. The mainstay of classical AML therapy has been chemotherapy, which is not suitable for relapsing or refractory patients, especially elderly patients. Among emerging novel therapeutic approaches for AML, epigenetic therapy and immunotherapy represent two exciting therapeutic developments. This review focuses on discussion of the therapeutic considerations for AML from the perspective of combination treatment, which incorporates both DNA methyltransferase inhibitor therapy, as one of the most promising epigenetic therapies, and immune checkpoint inhibitor or dendritic cell-based vaccination treatments, as examples of immunotherapy. Both challenges and rationale in the optimization of therapeutic approaches, as well as recent clinical trial developments, along this line are summarized.  相似文献   

4.
The discovery of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, together with an improved insight in dendritic cell biology illustrating their key function in the immune system, have provided a rationale to initiate dendritic cell-based cancer immunotherapy trials. Nevertheless, dendritic cell vaccination is in an early stage, as methods for preparing tumor antigen presenting dendritic cells and improving their immunostimulatory function are continuously being optimized. In addition, recent improvements in immunomonitoring have emphasized the need for careful design of this part of the trials. Still, valuable proofs-of-principle have been obtained, which favor the use of dendritic cells in subsequent, more standardized clinical trials. Here, we review the recent developments in clinical DC generation, antigen loading methods and immunomonitoring approaches for DC-based trials.  相似文献   

5.
Development of a whole cell vaccine for acute myeloid leukaemia   总被引:1,自引:0,他引:1  
We describe the modification of tumour cells to enhance their capacity to act as antigen presenting cells with particular focus on the use of costimulatory molecules to do so. We have been involved in the genetic modification of tumour cells to prepare a whole cell vaccine for nearly a decade and we have a particular interest in acute myeloid leukaemia (AML). AML is an aggressive and difficult to treat disease, especially, for patients for whom haematopoietic stem cell (HSC) transplant is not an option. AML patients who have a suitable donor and meet HSC transplant fitness requirements, have a 5-year survival of 50%; however, for patients with no suitable donor or for who age is a factor, the prognosis is much worse. It is particularly poor prognosis patients, who are not eligible for HSC transplant, who are likely to benefit most from immunotherapy. It would be hoped that immunotherapy would be used to clear residual tumour cells in these patients in the first remission following standard chemotherapy treatments and this will extend the remission and reduce the risk of a second relapse associated with disease progression and poor mortality rates. In this symposia report, we will focus on whole cell vaccines as an immunotherapeutic option with particular reference to their use in the treatment of AML. We will aim to provide a brief overview of the latest data from our group and considerations for the use of this treatment modality in clinical trials for AML. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004  相似文献   

6.
The prognosis of patients with acute myeloid leukemia (AML) remains dismal, with a 5-year overall survival rate of only 5.2% for the continuously growing subgroup of AML patients older than 65 years. These patients are generally not considered eligible for intensive chemotherapy and/or allogeneic hematopoietic stem cell transplantation because of high treatment-related morbidity and mortality, emphasizing the need for novel, less toxic, treatment alternatives. It is within this context that immunotherapy has gained attention in recent years. In this review, we focus on the use of dendritic cell (DC) vaccines for immunotherapy of AML. DC are central orchestrators of the immune system, bridging innate and adaptive immunity and critical to the induction of anti-leukemic immunity. We discuss the rationale and basic principles of DC-based therapy for AML and review the clinical experience that has been obtained so far with this form of immunotherapy for patients with AML.  相似文献   

7.
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells (LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despite the introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors (CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding “living drug” specifically targeting the tumor-associated antigen, and ensure long-term anti-tumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.  相似文献   

8.
9.
10.
《MABS-AUSTIN》2013,5(2):390-402
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off?target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2?derived Kasumi?1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML?selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA'). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients.  相似文献   

11.
The current standard treatment for acute myeloid leukemia (AML) is chemotherapy based on cytarabine and daunorubicine (7 + 3), but it discriminates poorly between malignant and benign cells. Dose-limiting off‑target effects and intrinsic drug resistance result in the inefficient eradication of leukemic blast cells and their survival beyond remission. This minimal residual disease is the major cause of relapse and is responsible for a 5-year survival rate of only 24%. More specific and efficient approaches are therefore required to eradicate malignant cells while leaving healthy cells unaffected. In this study, we generated scFv antibodies that bind specifically to the surface of AML blast cells and AML bone marrow biopsy specimens. We isolated the antibodies by phage display, using subtractive whole-cell panning with AML M2‑derived Kasumi‑1 cells. By selecting for internalizing scFv antibody fragments, we focused on potentially novel agents for intracellular drug delivery and tumor modulation. Two independent methods showed that 4 binders were internalized by Kasumi-1 cells. Furthermore, we observed the AML‑selective inhibition of cell proliferation and the induction of apoptosis by a recombinant immunotoxin comprising one scFv fused to a truncated form of Pseudomonas exotoxin A (ETA''). This method may therefore be useful for the selection of novel disease-specific internalizing antibody fragments, providing a novel immunotherapeutic strategy for the treatment of AML patients.  相似文献   

12.
13.
Evidence for the existence of CLL-specific antigens recognized by the immune system can be gathered from the observation that many patients display monoclonal or oligoclonal expansions and skewed repertoire of T cells. In vitro functional studies have shown that tumor-specific T-cells are able to lyse the leukemic cells. Antileukemic cellular immunity may be boosted in vivo using dendritic cell-based immunotherapy. Our preclinical studies provide evidence that DC that had endocytosed apoptotic CLL cells (Apo-DC) were superior to fusion hybrids, tumor lysate or RNA in eliciting antileukemic T-cell responses in vitro. We have validated a method for enriching the small number of monocyte precursors present in the peripheral blood of CLL patients and utilize them for generating individualized, Apo-DC cellular vaccines. In most cases, a minimum of 50 x 10(6) Apo-DC could be generated, beginning with immunomagnetically enriched monocytes from a single leukapheresis product containing at least 1% CD14+ cells. Cryopreservation and thawing did not affect the phenotype or the T cell stimulatory function of Apo-DC. A phase I/II, open label clinical trial examining the feasibility, safety and immunogenicity of Apo-DC vaccination has been initiated. CLL patients receive 10(7) Apo-DC for at least five immunizations and monitored clinically and immunologically for 52 weeks. Three cohorts are accrued stepwise. Cohort I receives Apo-DC alone; Cohort II: Apo-DC+ repeated doses of low-dose GM-CSF; Cohort III: low-dose cyclophosphamide followed by Apo-DC + GM-CSF.  相似文献   

14.
Summary For more than a decade clinical trials have attempted to define the role of immunotherapy in the treatment of patients with acute leukemia. Based on animal studies which indicated that non-specific immune stimulation had an antitumor effect if the tumor burden was small, the use of immunotherapy during remission in patients with acute leukemia seemed appropriate following the initial report of the success of bacillus Calmette-Guerin (BCG) in prolonging remission duration and survival in acute lymphoblastic leukemia. Therefore a series of randomized clinical trials was initiated to confirm these original observations. In four studies comparing BCG inoculations, with or without allogeneic leukemia cells, and chemotherapy or no therapy, no advantage of immunotherapy was noted. Immunotherapy appeared to be equally as good as chemotherapy. A combination of BCG and chemotherapy showed some advantage in one study, but no advantage was noted in two other studies.In acute myeloblastic leukemia several randomized trials suggested that BCG or one of its derivatives when given alone, in combination with allogeneic cells, or with chemotherapy had a marginal effect in prolonging remission duration and survival when compared to chemotherapy or rno therapy.In conclusion, immunotherapy during remission has marginal activity in acute leukemia.  相似文献   

15.
Summary Of 112 patients (maximum age 70 years) with acute nonlymphocytic leukemia, 62 (55%) went into remission on an induction therapy of cytosine arabinoside and daunorubicin. 20 patients were randomized for maintenance treatment consisting of chemotherapy only and 22 patients for combined chemo-immunotherapy. The chemotherapy consisted in 5-day courses of daunorubicin and cytosine arabinoside and of thioguanine and cytosine arabinoside, alternating every month. The chemo-immunotherapy group also received weekly intracutaneous injections of 109 allogeneic nonirradiated leukemic myeloblasts and 106 BCG organisms (Glaxo) by Heaf gun.The median duration of the first remission was 164 days for the chemotherapy group and 464 days for the chemo-immunotherapy group. The corresponding median times of survival were 344 days for the first group and 734 days for the second group. The difference concerning median duration of survival is statistically significant. Thus immunotherapy seems to prolong survival.  相似文献   

16.
17.
Understanding genomic events and the cascade of their effects in cell function is crucial for identifying distinct subsets of acute myeloid leukemia and developing new therapeutic strategies. Conventional cytogenetics, fluorescence in situ hybridization investigations and molecular studies have provided much information over the past few years. This review will focus on major genomic mechanisms in acute myeloid luekemia and on the genes implicated in the pathogenesis of specific subtypes.  相似文献   

18.
Antiapoptotic microenvironment of acute myeloid leukemia   总被引:1,自引:0,他引:1  
We showed previously that tumor-derived supernatant (TSN) from acute myeloid leukemia (AML) myeloblasts inhibits peripheral blood T cell activation and proliferation, rendering the T cells functionally incompetent. We show here that the AML TSN also significantly delays apoptosis of both resting and stimulated T cells, as judged by reduction in annexin V/propidium iodide staining. In addition, we show that this is not unique to T cells and that AML TSN inhibits apoptosis of peripheral B cells, neutrophils, and monocytes. Furthermore, it also enhances the survival of other AML myeloblasts with lower viability. Investigations into the mechanism demonstrate a reduction in the cleavage of procaspase-3, -8, and -9 and the caspase substrate, poly(ADP-ribose)polymerase (PARP). This may be due to Bcl-2, which is normally down-regulated in CD3/CD28-stimulated T cells, but is maintained in the presence of AML TSN. We conclude that AML cells generate an antiapoptotic microenvironment that favors the survival of malignant cells, but also inhibits apoptosis of other normal hemopoietic cells. Reversal of these immunosuppressive effects and restoration of normal immune responses in patients with AML would improve the success of immunotherapy protocols.  相似文献   

19.
20.
Summary Remission mononuclear cells incubated in vitro for 96 h with autologous stored blast cells were reinfused IV on two occasions as adjuvant maintenance therapy. The procedures were well tolerated, but in vitro response to the blast cells was negligible.The present mean duration of complete remission (15.7 months) appears to be similar to that of 28 patients (12.4 months) treated at the same time with chemotherapy alone by the same physicians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号