共查询到20条相似文献,搜索用时 0 毫秒
1.
Laura M. Walker 《Journal of molecular biology》2009,389(2):365-375
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries. 相似文献
2.
Maksymilian Chruszcz Lisa D. Vailes Jean-Marie Saint-Remy Anna Pomés 《Journal of molecular biology》2009,386(2):520-530
The group 1 mite allergens Der f 1 and Der p 1 are potent allergens excreted by Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively. The human immunoglobulin E antibody responses to the group 1 allergens show more cross-reactivity than the murine immunoglobulin G antibody responses, which are largely species specific. Here, we report the crystal structure of the mature form of Der f 1, which was isolated from its natural source, and a new high-resolution structure of mature recombinant Der p 1. Unlike Der p 1, Der f 1 is monomeric both in the crystalline state and in solution. Moreover, no metal binding is observed in the structure of Der f 1 despite the fact that all amino acids involved in Ca2+ binding in Der p 1 are completely conserved in Der f 1. Although Der p 1 and Der f 1 share an extensive sequence identity, comparison of the crystal structures of both allergens revealed structural features that could explain the differences in murine IgG and human IgE antibody responses to these allergens. There are structural differences between Der f 1 and Der p 1 that are unevenly distributed on the allergens' surfaces. This uneven spatial arrangement of conserved versus altered residues could explain both the specificity and cross-reactivity of antibodies against Der f 1 and Der p 1. 相似文献
3.
Pelat T Bedouelle H Rees AR Crennell SJ Lefranc MP Thullier P 《Journal of molecular biology》2008,384(5):1400-1407
Fab 35PA83 is an antibody fragment of non-human primate origin that neutralizes the anthrax lethal toxin. Human antibodies are usually preferred when clinical use is envisioned, even though their framework regions (FR) may carry mutations introduced during affinity maturation. These hypermutations can be immunogenic and therefore FR that are encoded by human germline genes, encountered in IgMs and thus part of the “self” proteins, are preferable. Accordingly, the proportion of FR residues in 35PA83 that were encoded by human V and J germline genes, i.e. the germinality index (GI) of 35PA83, was increased in a multistep cumulative approach. In a first step, the FR1 and FR4 residues of 35PA83 were changed simultaneously into their counterparts coded by 35PA83's closest human germline genes, without prior modelling. The resulting derivative of 35PA83 had the same affinity as its parental Fab. In a second step, the 3D structures of this first 35PA83 derivative, carrying the same type of residue changes but in the FR2 and FR3 regions, were modelled in silico from sequences. Some of the changes in FR2 or FR3 modified the predicted peptide backbone. The changes that did not seem to alter the structure were introduced simultaneously in the Fab by an in vitro method and resulted in a loss of reactivity, which could however be fully restored by a single point mutation. The final 35PA83 derivative had a GI higher than that of a fully human Fab, which had neutralization properties similar to 35PA83 and which was used as a benchmark in this study. 相似文献
4.
Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation 总被引:1,自引:0,他引:1
Taniguchi T Sumida M Hiraoka S Tomoo K Kakehi T Minoura K Sugiyama S Inaka K Ishida T Saito N Tanaka C 《FEBS letters》2005,579(6):1399-1404
Tau is the major antigenic component of neurofibrillary pathology in tauopathy, including Alzheimer's disease. Although conversion of soluble tau to an insoluble polymerized fibrillar form is a key factor in the pathogenesis of tauopathy, the mechanism of the change is unclear and no inhibitors of fibril formation are available. Monoclonal antibodies against the 1st or 2nd repeat of the microtubule binding domain, but not the C-terminal 16 residues, completely inhibited tau aggregation into PHF. Furthermore, they did not inhibit tau-induced tubulin assembly. Thus, they are useful to investigate tau protein conversion and will be useful therapeutic lead materials. 相似文献
5.
The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen. Traditionally, the generation of single-chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell-surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single-chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high-throughput screening of arrayed phage clones, and characterization of recombinant single-chain variable regions. This strategy was used to generate a panel of single-chain Abs specific for the innate immunity receptor Toll-like receptor 2. Once generated, individual single-chain variable regions were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. 相似文献
6.
Padavattan S Schirmer T Schmidt M Akdis C Valenta R Mittermann I Soldatova L Slater J Mueller U Markovic-Housley Z 《Journal of molecular biology》2007,368(3):742-752
The major allergens of honeybee venom, hyaluronidase (Hyal) and phospholipase A2, can induce life-threatening IgE-mediated allergic reactions in humans. Although conventional immunotherapy is effective, up to 40% of patients develop allergic side effects including anaphylaxis and thus, there is a need for an improved immunotherapy. A murine monoclonal anti-Hyal IgG1 antibody (mAb 21E11), that competed for Hyal binding with IgEs from sera of bee venom allergic patients, was raised. The fragment of these IgG antibodies which bind to antigen (Fab) was produced and complexed (1:1) with Hyal. The crystal structure determination of Hyal/Fab 21E11 complex (2.6 A) enabled the identification of the Hyal-IgG interface which provides indirect information on the Hyal-IgE interaction (B-cell epitope). The epitope is composed of a linear array of nine residues (Arg138, His141-Arg148) located at the tip of a helix-turn-helix motive which protrudes away from the globular core and fits tightly into the deep surface pocket formed by the residues from the six complementarity determining regions (CDRs) of the Fab. The epitope is continuous and yet its conformation appears to be essential for Ab recognition, since the synthetic 15-mer peptide comprising the entire epitope (Arg138-Glu152) is neither recognized by mAb 21E11 nor by human IgEs. The structure of the complex provides the basis for the rational design of Hyal derivatives with reduced allergenic activity, which could be used in the development of safer allergen-specific immunotherapy. 相似文献
7.
Li B Russell SJ Compaan DM Totpal K Marsters SA Ashkenazi A Cochran AG Hymowitz SG Sidhu SS 《Journal of molecular biology》2006,361(3):522-536
The cell-extrinsic apoptotic pathway triggers programmed cell death in response to certain ligands that bind to cell-surface death receptors. Apoptosis is essential for normal development and homeostasis in metazoans, and furthermore, selective activation of the cell-extrinsic pathway in tumor cells holds considerable promise for cancer therapy. We used phage display to identify peptides and synthetic antibodies that specifically bind to the human proapoptotic death receptor DR5. Despite great differences in overall size and structure, the DR5-binding peptides and antibodies shared a tripeptide motif, which was conserved within a disulfide-constrained loop of the peptides and the third complementarity determining region of the antibody heavy chains. The X-ray crystal structure of an antibody in complex with DR5 revealed that the tripeptide motif is buried at the core of the interface, confirming its central role in antigen recognition. We found that certain peptides and antibodies exhibited potent proapoptotic activity against DR5-expressing SK-MES-1 lung carcinoma cells. These phage-derived ligands may be useful for elucidating DR5 activation at the molecular level and for creating synthetic agonists of proapoptotic death receptors. 相似文献
8.
Lee JE Kuehne A Abelson DM Fusco ML Hart MK Saphire EO 《Journal of molecular biology》2008,375(1):202-216
13F6-1-2 is a murine monoclonal antibody that recognizes the heavily glycosylated mucin-like domain of the Ebola virus virion-attached glycoprotein (GP) and protects animals against lethal viral challenge. Here we present the crystal structure, at 2.0 Å, of 13F6-1-2 in complex with its Ebola virus GP peptide epitope. The GP peptide binds in an extended conformation, anchored primarily by interactions with the heavy chain. Two GP residues, Gln P406 and Arg P409, make extensive side-chain hydrogen bond and electrostatic interactions with the antibody and are likely critical for recognition and affinity. The 13F6-1-2 antibody utilizes a rare Vλx light chain. The three light-chain complementarity-determining regions do not adopt canonical conformations and represent new classes of structures distinct from Vκ and other Vλ light chains. In addition, although Vλx had been thought to confer specificity, all light-chain contacts are mediated through germ-line-encoded residues. This structure of an antibody that protects against the Ebola virus now provides a framework for humanization and development of a postexposure immunotherapeutic. 相似文献
9.
Sanguineti S Centeno Crowley JM Lodeiro Merlo MF Cerutti ML Wilson IA Goldbaum FA Stanfield RL de Prat-Gay G 《Journal of molecular biology》2007,370(1):183-195
DNA recognition by antibodies is a key feature of autoimmune diseases, yet model systems with structural information are very limited. The monoclonal antibody ED-10 recognizes one of the strands of the DNA duplex used in the immunogenic complex. Modifications of the 5' end decrease the binding affinity and short oligonucleotides retain high binding affinity. We determined crystal structures for the Fab bound to a 6-mer oligonucleotide containing the specific sequence that raised the antibody and compared it with the unliganded Fab. Only the first two bases from the 5' end (dTdC) display electron density and we observe four key hydrogen bonds at the interface. The thymine ring is stacked between TrpH50 and TrpH95, and the cytosine ring is packed against TyrL32. Upon DNA binding, TyrH97 and TrpH95 rearrange to allow subnanomolar binding affinity, five orders of magnitude higher than other reported complexes, possibly because of having gone through affinity maturation. This structure represents the first bona fide antibody DNA immunogen complex described in atomic detail. 相似文献
10.
Lymphocytes obtained from pig blood by gradient centrifugation were subjected to a temperature shift (4 to 37 degrees C). The proteins released from the plasma membrane were fractionated by affinity chromatography using immunoglobulin G immobilized on fine polyamide particles. The main component liberated from the adsorbent by diethylamine buffer (pH 11.5) exhibited an apparent Mr of 18000-20000 in SDS-polyacrylamide gel electrophoresis. This crude receptor preparation possessed a substantially higher affinity to immobilized immunoglobulin G than to immobilized Fab fragment and inhibited significantly the binding of labeled immunoglobulin G to pig lymphocytes. 相似文献
11.
Currently, almost all U.S. Food and Drug Administration-approved therapeutic antibodies and the vast majority of those in clinical trials are full-size antibodies mostly in an immunoglobulin G1 format of about 150 kDa in size. Two fundamental problems for such large molecules are their poor penetration into tissues (e.g., solid tumors) and poor or absent binding to regions on the surface of some molecules [e.g., on the human immunodeficiency virus envelope glycoprotein (Env)] that are accessible by molecules of smaller size. We have identified a phage-displayed heavy chain-only antibody by panning of a large (size, ∼ 1.5 × 1010) human naive Fab (antigen-binding fragment) library against an Env and found that the heavy chain variable domain (VH) of this antibody, designated as m0, was independently folded, stable, highly soluble, monomeric, and expressed at high levels in bacteria. m0 was used as a scaffold to construct a large (size, ∼ 2.5 × 1010), highly diversified phage-displayed human VH library by grafting naturally occurring complementarity-determining regions (CDRs) 2 and 3 of heavy chains from five human antibody Fab libraries and by randomly mutating four putative solvent-accessible residues in CDR1 to A, D, S, or Y. The sequence diversity of all CDRs was determined from 143 randomly selected clones. Most of these VHs were with different CDR2 origins (six of seven groups of VH germlines) or CDR3 lengths (ranging from 7 to 24 residues) and could be purified directly from the soluble fraction of the Escherichia coli periplasm. The quality of the library was also validated by successful selection of high-affinity VHs against viral and cancer-related antigens; all selected VHs were monomeric, easily expressed, and purified with high solubility and yield. This library could be a valuable source of antibodies targeting size-restricted epitopes and antigens in obstructed locations where efficient penetration could be critical for successful treatment. 相似文献
12.
Mauro Lapelosa Gail Ferstandig Arnold Emilio Gallicchio Eddy Arnold Ronald M. Levy 《Journal of molecular biology》2010,397(3):752-6218
The development of an effective AIDS vaccine remains the most promising long-term strategy to combat human immunodeficiency virus (HIV)/AIDS. Here, we report favorable antigenic characteristics of vaccine candidates isolated from a combinatorial library of human rhinoviruses displaying the ELDKWA epitope of the gp41 glycoprotein of HIV-1. The design principles of this library emerged from the application of molecular modeling calculations in conjunction with our knowledge of previously obtained ELDKWA-displaying chimeras, including knowledge of a chimera with one of the best 2F5-binding characteristics obtained to date. The molecular modeling calculations identified the energetic and structural factors affecting the ability of the epitope to assume conformations capable of fitting into the complementarity determining region of the ELDKWA-binding, broadly neutralizing human mAb 2F5. Individual viruses were isolated from the library following competitive immunoselection and were tested using ELISA and fluorescence quenching experiments. Dissociation constants obtained using both techniques revealed that some of the newly isolated chimeras bind 2F5 with greater affinity than previously identified chimeric rhinoviruses. Molecular dynamics simulations of two of these same chimeras confirmed that their HIV inserts were partially preorganized for binding, which is largely responsible for their corresponding gains in binding affinity. The study illustrates the utility of combining structure-based experiments with computational modeling approaches for improving the odds of selecting vaccine component designs with preferred antigenic characteristics. The results obtained also confirm the flexibility of HRV as a presentation vehicle for HIV epitopes and the potential of this platform for the development of vaccine components against AIDS. 相似文献
13.
In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives. 相似文献
14.
François-Xavier Theillet Frederick A. Saul Brigitte Vulliez-Le Normand Franco Felici Laurence A. Mulard Muriel Delepierre Graham A. Bentley 《Journal of molecular biology》2009,388(4):839-850
The use of carbohydrate-mimicking peptides to induce immune responses against surface polysaccharides of pathogenic bacteria offers a novel approach to vaccine development. Factors governing antigenic and immunogenic mimicry, however, are complex and poorly understood. We have addressed this question using the anti-lipopolysaccharide monoclonal antibody F22-4, which was raised against Shigella flexneri serotype 2a and shown to protect against homologous infection in a mouse model. In a previous crystallographic study, we described F22-4 in complex with two synthetic fragments of the O-antigen, the serotype-specific saccharide moiety of lipopolysaccharide. Here, we present a crystallographic and NMR study of the interaction of F22-4 with a dodecapeptide selected by phage display using the monoclonal antibody. Like the synthetic decasaccharide, the peptide binds to F22-4 with micromolar affinity. Although the peptide and decasaccharide use very similar regions of the antigen-binding site, indicating good antigenic mimicry, immunogenic mimicry by the peptide was not observed. The F22-4-antigen interaction is significantly more hydrophobic with the peptide than with oligosaccharides; nonetheless, all hydrogen bonds formed between the peptide and F22-4 have equivalents in the oligosaccharide complex. Two bridging water molecules are also in common, adding to partial structural mimicry. Whereas the bound peptide is entirely helical, its structure in solution, as shown by NMR, is helical in the central region only. Moreover, docking the NMR structure into the antigen-binding site shows that steric hindrance would occur, revealing poor complementarity between the major solution conformation and the antibody that could contribute to the absence of immunogenic mimicry. 相似文献
15.
Jaramillo ML Leon Z Grothe S Paul-Roc B Abulrob A O'Connor McCourt M 《Experimental cell research》2006,312(15):2778-2790
The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of (125)I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized (125)I-225 mAb is recycled to the surface much more efficiently than internalized (125)I-EGF. Also, we found that internalization of (125)I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidenced by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation. 相似文献
16.
Kawai Y Tanaka H Murota K Naito M Terao J 《Biochemical and biophysical research communications》2008,374(3):527-532
The localization and target sites of tea catechins underlying their biological activity including anti-atherosclerotic activity have not yet been fully understood. To identify the target sites of catechins in vivo, we have developed a novel monoclonal antibody (mAb5A3) specific for (−)-epicatechin-3-gallate (ECg), one of the major tea catechins. The immunoreactive materials with mAb5A3 were detected in the human atherosclerotic lesions but not in the normal aorta, and were specifically localized in the macrophage-derived foam cells. In vitro experiments using macrophage-like cell lines also showed the significant accumulation of ECg in the cells. We also demonstrated that ECg could suppress the gene expression of a scavenger receptor CD36, a key molecule for foam cell formation, in macrophage cells. These results, for the first time, showed the target site of a tea component ECg in the aorta and might provide a mechanism for the anti-atherosclerotic actions of the catechins. 相似文献
17.
Konstantakaki M Tzartos SJ Poulas K Eliopoulos E 《Biochemical and biophysical research communications》2007,356(3):569-575
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR. 相似文献
18.
Emi Hifumi Fumiko Morihara Masanori Ishimaru Keiko Morikawa Kosuke Shimizu Taizo Uda 《Journal of peptide science》1999,5(1):24-31
Messenger RNA purified from the anti hemin monoclonal antibody (1D3) secreting hybridoma was amplified by RT‐PCR and the nueleotide and amino acid sequences of the antibody were determined. The role of complementarity determining regions (CDRs) in porphyrin recognition and its immunochemical feature of the antibody were investigated by using ELISA, fluorescence measurement and computational calculation of the conformation. All CDR peptides of the heavy chain of the antibody were synthesized and their affinity constants to porphyrins were determined. The value of CDR2 of heavy chain (CDRH2) of 1D3 was 1.5×105/M for protoporphyrin and 7×107/M for TCPP, respectively, while that of the whole antibody showed to be 1.2×107/M for TCPP. Though CDRH2 is a 17 meric peptide, it showed higher affinity than the whole antibody (1D3). Porphyrins can be considered to firmly bind with CDRH2, while CDRH3 is not involved in the antigen binding. CDR‐1 may participate in the recognition with a small contribution. By the computational analysis of steric conformation, it was suggested that CDRH1 and CDRH2 co‐operatively function in the recognition of porphyrin. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
19.
Christoph Hasenhindl Balder Lai Javier Delgado Michael W. Traxlmayr Gerhard Stadlmayr Florian Rüker Luis Serrano Chris Oostenbrink Christian Obinger 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(9):1530-1540
Fcabs (Fc antigen binding) are crystallizable fragments of IgG where the C-terminal structural loops of the CH3 domain are engineered for antigen binding. For the design of libraries it is beneficial to know positions that will permit loop elongation to increase the potential interaction surface with antigen. However, the insertion of additional loop residues might impair the immunoglobulin fold. In the present work we have probed whether stabilizing mutations flanking the randomized and elongated loop region improve the quality of Fcab libraries. In detail, 13 libraries were constructed having the C-terminal part of the EF loop randomized and carrying additional residues (1, 2, 3, 5 or 10, respectively) in the absence and presence of two flanking mutations. The latter have been demonstrated to increase the thermal stability of the CH3 domain of the respective solubly expressed proteins. Assessment of the stability of the libraries expressed on the surface of yeast cells by flow cytometry demonstrated that loop elongation was considerably better tolerated in the stabilized libraries. By using in silico loop reconstruction and mimicking randomization together with MD simulations the underlying molecular dynamics were investigated. In the presence of stabilizing stem residues the backbone flexibility of the engineered EF loop as well as the fluctuation between its accessible conformations were decreased. In addition the CD loop (but not the AB loop) and most of the framework regions were rigidified. The obtained data are discussed with respect to the design of Fcabs and available data on the relation between flexibility and affinity of CDR loops in Ig-like molecules. 相似文献
20.
Monoclonal antibodies have been prepared against rat liver epoxide hydrolase (EH), some of which gave precipitation lines on immunodiffusion against pure EH suggesting the presence of repetitive structural domains on the enzyme. Using ELISA, with polyclonal antibodies to rat and rabbit liver EH, reactivity and therefore structural similarities between EH of all species tested, including human, were observed. This was in contrast to immunodiffusion results demonstrating the limitations of the latter technique. Using monoclonal antibodies in ELISA, greatest structural similarity was between rat, mouse, and Syrian hamster EH and relatively little between rat and human. Two of the antibodies reacted with nearly all species tested and may be directed towards critical sites on the enzyme. This and most of the EH molecule would appear to be localised on the cytoplasmic surface of the endoplasmic reticulum. 相似文献