首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang JZ 《生理学报》2004,56(1):79-82
探讨神经肽Y(neuropeptide Y,NPY)在SD大鼠中脑导水管周围灰质(periaqueductal grey,PAG)对伤害性刺激反应的作用。应用热板和机械压力实验法,以大鼠后爪缩爪反应潜伏期(paw withdrawal latency,PWL)为痛阈指标。观察PAG内微量注射NPY对PWLS的影响。PAG内注射0.05、0.1、0.2nmol NPY均显著地增加慢性神经痛大鼠的双侧PWLS,且呈量效关系。NPY引起的PWLs增加可被Y1受体拮抗剂和阿片受体拮抗剂所阻断。结果提示,在大鼠PAG微量注射NPY可产生明显的镇痛作用。  相似文献   

2.
探讨神经肽Y(neruopride Y, NPY) 在SD大鼠中脑导水管周围灰质 (periaqueductal grey, PAG) 对伤害性刺激反应的作用.应用热板和机械压力实验法,以大鼠后爪缩爪瓜潜伏期(paw withdrawal latency, PWL) 为痕阈指标, 观察PAG 内微量注射NPY对PWLs的影响.PAG内注射 0.05、0.1、 0.2 nmol NPY 均显著地增加慢性神经痛大鼠的双侧PWLs, 且呈量效关系.NPY引起的PWLs增加可被Y1受体拮抗剂和阿片剂所阻断.结果提示,在大鼠PAG 微量注射NPY可产生明显的镇痛作用.  相似文献   

3.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

4.
The central haemodynamic effects of neuropeptide Y (NPY), both alone and together with either noradrenaline (NA) or vasopressin (AVP), have been investigated by microinjecting synthetic peptide into the nucleus tractus solitarius (NTS) of anaesthetized rats. NPY alone elicited dose-dependent changes in blood pressure (BP) and heart rate (HR); 470 fmol inducing a pressor response, and 4.7 pmol a fall in BP. The hypotensive response to 20 nmol NA was significantly modified by both simultaneous and prior injection of an ineffective dose (47 fmol) of NPY. Prior injection of a similar dose of NPY also modified the NTS pressor effect of 10 ng AVP. A relationship between the action of AVP and NPY in the NTS was further indicated by the finding that prior injection of an ineffective dose of AVP (1 ng) reduced the hypotensive response to 4.7 pmol NPY, and by the demonstration of contrasting effects of 4.7 pmol NPY in AVP-deficient Brattleboro rats compared to parent strain LE rats. These results, taken together with the recent localization of NPY-like immunoreactivity in the NTS, suggest a role for NPY in central cardiovascular control. In addition, NPY has been shown to exhibit functional interactions with both an amine neurotransmitter and a neuropeptide present in the NTS of rats.  相似文献   

5.
The object of the present study was to investigate the effects of the sympathetic cotransmitter neuropeptide Y (NPY), and the closely related gut hormone peptide YY (PYY), on splanchnic blood flow regulation in the anaesthetized pig in vivo. Systemic injections of NPY, PYY and the NPY Y(1) receptor agonist [Leu(31)Pro(34)]NPY (470 pmol kg(-1) each) evoked pressor and mesenteric vasoconstrictor responses that were largely abolished by the selective NPY Y(1) receptor antagonist H 409/22 (60 nmol kg(-1) min(-1)). In contrast, the NPY Y(2) receptor agonist N-acetyl[Leu(28)Leu(31)]NPY(24-36) (1.1 nmol kg(-1)), a dose of which potently evoked splenic NPY Y(2) receptor mediated (not affected by H 409/22) vasoconstriction, did not evoke any mesenteric vascular response. Mesenteric vascular responses to angiotensin II (10 pmol kg(-1)), alpha,beta-methylene ATP (10 nmol kg(-1)) and the alpha(1)-adrenoceptor agonist phenylephrine (15 nmol kg(-1)), were not inhibited by H 409/22. It is concluded that NPY and PYY evokes porcine mesenteric vasoconstriction mediated by the NPY Y(1) receptor subtype, as demonstrated by selective and specific inhibition exerted by the NPY Y(1) receptor antagonist H 409/22, in vivo.  相似文献   

6.
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.  相似文献   

7.
It has been shown that centrally administered neuropeptide Y (NPY) delays gastric emptying. To determine the receptor subtypes of NPY mediating the inhibitory effects on gastric emptying, effects of intracerebroventricular injection of NPY, [Leu31,Pro34]NPY (a Y1 agonist) and NPY-(3-36) (a Y2 agonist) on solid gastric emptying and postprandial antropyloric motility were studied in conscious rats. Intracerebroventricular injection of NPY and NPY-(3-36), but not [Leu31,Pro34] NPY, delayed solid gastric emptying in a dose-dependent manner (0.03-3 nmol). After the feeding (40 min), contractions with low frequency and high amplitude of the antrum were frequently observed, and the peak contraction of the antrum occurred most often 3-6 s before the peak contraction of the pylorus. Intracerebroventricular injection of NPY and NPY-(3-36) (3 nmol), but not [Leu31,Pro34]NPY, significantly reduced antral contractions and the number of antropyloric coordination events. It is suggested that centrally administered NPY impairs postprandial antral contractions and antropyloric coordination via Y2 receptors, resulting in delayed gastric emptying.  相似文献   

8.
Zhang W  Lundberg JM  Thorén P 《Life sciences》1999,65(17):1839-1844
The effects of a neuropeptide Y (NPY) Y1-receptor antagonist (BIBP 3226) on mean arterial pressure (MAP) and heart rate were investigated in conscious unrestrained rats with chronic congestive heart failure. The rats were randomly assigned to 2 groups, and received either BIBP 3226 or its inactive enantiomer (BIBP 3435) as an intravenous infusion (6 mg/kg/h for 1.5 h, respectively). Before, during and after the infusion, rats were stressed with a jet of air and received a bolus injection of NPY (2 nmol/kg iv.). There was no difference between the 2 groups in resting MAP and heart rate before, during or after infusion (BIBP 3226 vs. BIBP 3435). The effects of exogenous NPY on MAP were significantly attenuated in BIBP 3226 group during and 1 h after the infusion (p<0.05). The tissue NPY levels in heart, adrenal gland and kidney in heart failure rats were not different from those in sham-operated rats. The results suggest that Y1-receptor mechanisms are of minor importance in the short-term control of basal MAP and heart rate in conscious unrestrained rats with congestive heart failure.  相似文献   

9.
(1) In the present study the occlusion method was employed to evaluate the overall coexistence of neuropeptide Y and phenylethanolamine-N-methyl transferase, neuropeptide Y and tyrosine hydroxylase as well as cholecystokinin and phenylethanolamine-N-methyl transferase immunoreactivity in nerve cell bodies of the dorsal subnuclei of the nucleus tractus solitarius of the male rat. A high degree of coexistence was established for neuropeptide Y/phenylethanolamine-N-methyl transferase, cholecystokinin/phenylethanolamine-N-methyl transferase and for tyrosine hydroxylase/neuropeptide Y immunoreactivity. (2) Sulfated [12I]cholecystokinin-8 was used as radioligand to study the densities of cholecystokinin-8 binding sites in the dorsal medulla oblongata by means of quantitative receptor autoradiography. High densities of binding sites were observed in parts of the nucleus tractus solitarius and in the area postrema. Labeling was also observed in the dorsal motor nucleus of the vagus. (3) In the physiological studies adrenaline (0.15–1.0 nmol), neuropeptide Y (0.075–0.75 nmol) and sulfated cholecystokinin-8 (0.3–3.0 nmol) were administered alone or in combination with neuropeptide Y or adrenaline intracisternally into -chloralose anaesthetized male rats. Especially the hypotensive and bradycardic responses of adrenaline were counteracted in the adrenaline/cholecystokinin co-treated animals, whereas the cardiovascular effects of neuropeptide Y when co-administered with cholecystokinin-8 (0.3 nmol) appeared to be more resistant to the antagonistic effect of cholecystokinin 8. In addition, cholecystokinin-8 further enhanced the neuropeptide Y-induced bradynpnea and increase in the tidal volume.

The present results indicate the existence of neuropeptide Y, adrenaline and cholecystokinin-8 immunoreactivity in the same neurons of the dorsal subnuclei of the nucleus tractus solitarius. Furthermore, binding sites for cholecystokinin-8 seem to at least partly co-distribute with -2 adrenergic and neuropeptide Y binding sites in the nucleus tractus solitarius. In the functional analysis, an antagonistic interaction between cholecystokinin-8 and adrenaline as well as between cholecystokinin and neuropeptide Y is demonstrated opening up the possibility that cholecystokinin peptides act as intrinsic modulators in the putative cholecystokinin/neuropeptide Y/adrenaline synapses in the nucleus tractus solitarius.  相似文献   


10.
Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.  相似文献   

11.
Britton KT  Southerland S 《Peptides》2001,22(4):607-612
Intracerebroventricular injection of neuropeptide Y (NPY) produces potent 'anxiolytic' effects in animal models of anxiety. Administration of opioid receptor antagonists suppresses NPY-induced food intake and thermogenesis. The present study examined whether the opiate antagonist naloxone would also suppress the 'anxiolytic' effects of neuropeptide Y. Following training and stabilization of responding in an operant conflict model of anxiety, rats were injected with either NPY or diazepam. Both NPY (veh., 2, 4, 6 microg, i.c.v.) and chlordiazepoxide (veh., 2, 4, 6 mg/kg, i.p.) produced a dose-dependent increase in punished responding in the conflict test. The 'anxiolytic' effects of NPY were not blocked by the administration of flumazenil (3, 6, 12 mg/kg, i.p.). The administration of naloxone (0.25-2.0 mg/kg, s.c.) antagonized the effects of NPY. Central administration of the selective mu opiate antagonist CTAP (1 microg, i.c.v.) partially blocked NPY-induced conflict responding. These results support the hypothesis that NPY may play an important role in experimental anxiety independent of the benzodiazepine receptor and further implicate the opioid system in the behavioral expression of anxiety.  相似文献   

12.
We studied the effects of neuropeptide K (NPK), a 36 amino acid residue peptide of the tachykinin family, on latency to onset of feeding and cumulative 1 and 2 h food intake in three experimental paradigms. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to food-deprived rats delayed the onset of feeding and significantly decreased the cumulative food intake. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to water-deprived rats produced no effect on subsequent drinking behavior. Similarly, intraperitoneal injection of NPK (3.14 nmol) 15 min before onset of the dark phase (of the light-dark cycle) significantly delayed the occurrence of ingestive behavior and the cumulative food intake was markedly suppressed. Furthermore, administration of NPK intraperitoneally (0.5-3.14 nmol) 15 min before intraventricular (i.c.v.) injection of neuropeptide Y (NPY 0.47 nmol) to satiated rats significantly suppressed NPY-induced feeding and delayed the onset of ingestive behavior. However, when administered centrally prior to NPY injection, NPK delayed the onset of feeding response only. Collectively, these findings show that NPK can acutely and consistently suppress feeding behavior.  相似文献   

13.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

14.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

15.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   

16.
Effects of neuropeptide Y (NPY) on motility of the proximal stomach was examined in anesthetized rats. Intragastric pressure was measured using a balloon situated in the proximal part of the stomach. Administration of NPY into the fourth ventricle induced relaxation of the proximal stomach in a dose-dependent manner. Administration of an Y1 receptor (Y1R) agonist [Leu31, Pro34]NPY induced a larger relaxation than NPY. The administration of an Y2 receptor agonist (NPY 13-36) did not induce significant changes in motility. Microinjections of [Leu31, Pro34]NPY into the caudal part of the dorsal vagal complex (DVC) induced relaxation of the proximal stomach. In contrast, similar injections into the intermediate part of the DVC increased IGP of the proximal stomach. Administration of NPY into the fourth ventricle did not induce relaxation after bilateral injections of the Y1R antagonist (1229U91) into the caudal DVC. These results indicate that NPY induces relaxation in the proximal stomach via Y1Rs situated in the DVC. Because bilateral vagotomy below the diaphragm abolished the relaxation induced by the administration of NPY into the fourth ventricle, relaxation induced by NPY is probably mediated by vagal preganglionic neurons. Intravenous injection of atropine methyl nitrate reduced relaxation induced by administration of NPY. Therefore, relaxation induced by NPY is likely mediated by peripheral cholinergic neurons.  相似文献   

17.
L Thibault  N Komenami 《Peptides》1999,20(5):601-609
The effects of injecting or infusing neuropeptide Y (NPY) into the suprachiasmatic nucleus of rats on patterns of individual macronutrient and water intake were examined during the following 2 h and also across 12 and 24 h light/dark cycles. Increased total energy intake (218 and 170%) and energy intake from the dextrin/sucrose diet (499 and 247%) were observed in the 2 h following injection of 100 pmol NPY at early light and early dark, respectively, and in the following 24 h (total energy: 67%, dextrin/sucrose: 73%). Nocturnal casein energy intake was also increased (258%) following NPY injection. Continuous infusion of 10 pmol/h of NPY suppressed nocturnal total energy (36%) and dextrin/sucrose intake (36%) as well as 24 h energy intake from casein (43%). These results demonstrate divergent effects of NPY subsequent to different mode of administration.  相似文献   

18.
The distribution of neuropeptide Y in the brain includes extensive coexistence within adrenaline- and noradrenaline-containing neurons and many of its actions are often associated with adrenergic systems. Since neuropeptide Y immunoreactivity is particularly intense in the preoptic area, one of the principal sites for thermoregulation, we have tested the effects of neuropeptide Y on core temperature in normothermic rats, and rats rendered hypothermic by systemic treatment with adrenergic antagonists. In the normothermic rat, intracerebroventricular administration of 1 microgram of neuropeptide Y did not have a significant effect on core temperature. Intraperitoneal treatment with the alpha 1-adrenoceptor antagonist, prazosin, or the beta-adrenoceptor antagonist, propranolol, caused an immediate and significant hypothermia; the intracerebroventricular administration of 1 microgram of neuropeptide Y, 10 minutes after these drugs, strongly potentiated their hypothermic effect. Although intraperitoneal treatment with the alpha 2-adrenoceptor antagonist, idazoxan, had no hypothermic effect per se, the intracerebroventricular administration of NPY 10 minutes after this antagonist led to a significant decrease in core temperature.  相似文献   

19.
Regulation of food intake by neuropeptide Y in goldfish   总被引:1,自引:0,他引:1  
In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.  相似文献   

20.
Neuropeptide Y (0.24 and 1.17 nmol icv) and clonidine (0.025, 0.05 and 0.1 mg/Kg ip) induced a slight decrease of short duration of the rectal temperature in mice in a dose-dependent manner. While pretreatment with yohimbine (0.5 mg/Kg sc), was without effect on neuropeptide Y-induced hypothermia, it attenuated the hypothermic effect of clonidine. The association of neuropeptide Y (0.05 and 0.24 nmol icv) with clonidine (0.0125, 0.025, 0.05 and 0.1 mg/Kg ip) induced a synergistic effect, but it only was significant when neuropeptide Y 0.05 and 0.24 nmol icv was associated with clonidine 0.1 mg/Kg ip and when neuropeptide Y 0.05 nmol icv was associated with clonidine 0.05 mg/Kg ip. These results suggest that the effect of neuropeptide Y is not mediated by an interaction on alpha 2-adrenoceptor, but in accordance with these results, the existence of a collaborative mechanism between both neuropeptide Yergic and noradrenergic systems cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号