首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Three N-glycosylated carrier proteins (CP) for insulin-like growth factors (apparent molecular weights 30-32, 42 and 45 kDa) were isolated from adult rat serum. They share the same amino terminus (up to amino acid 31) and are constituents of the growth hormone-dependent native 150-200 kDa IGF carrier complex. Residues 12-31 display 60 and 50% sequence homology, respectively, to residues 2-21 of fetal rat and to residues 4-22 of a human amniotic fluid IGF carrier protein. No homology exists with the type I or II IGF receptors. Adult rat serum also contains a fourth IGF CP (24 kDa) whose 9 NH2-terminal amino acids are identical to those of the fetal form. Our findings suggest that the three N-glycosylated components originate from the same IGF carrier protein (adult form) and that the 24 kDa protein is a separate (fetal) species.  相似文献   

2.
We have used site-directed mutagenesis of a synthetic gene for insulin-like growth factor (IGF) I to prepare three analogs in which specific residues in the A region are replaced with the corresponding residues in the A chain of insulin. The analogs are [Ile41, Glu45, Gln46, Thr49, Ser50, Ile51, Ser53, Tyr55, Gln56]IGF I (A chain mutant), in which residue 41 is changed from threonine to isoleucine and residues 42 to 56 of the A region are replaced, [Thr49, Ser50, Ile51]IGF I, and [Tyr55, Gln56]IGF I. These analogs are all equipotent to IGF I at the type 1 IGF receptor in human placental membranes, and in stimulating the incorporation of [3H]thymidine into DNA in the rat vascular smooth muscle cell line A10. However, the A chain mutant and [Thr49, Ser50, Ile51]IGF I have greater than 20-fold lower relative affinity for the type 2 IGF receptor of rat liver membranes, respectively. In contrast, [Tyr55, Gln56]IGF I has 7-fold higher affinity than IGF I for the type 2 IGF receptor. Residues 49, 50, and 51 in IGF I are Phe-Arg-Ser and are strictly conserved in IGF II. Residues 55 and 56 of IGF I and the corresponding residues in IGF II are Arg-Arg and Ala-Leu, respectively. Thus, the presence of the charged residues at these positions in IGF I appears to be responsible, in part, for the lower affinity of IGF I for the type 2 IGF receptor. In addition to the alterations in affinity for the type 2 IGF receptor, the A chain mutant has a 7-fold increase in affinity for insulin receptors, and [Thr49, Ser50, Ile51]IGF I has a 4-fold lower affinity for acid-stable human serum binding protein. These data strongly suggest that specific determinants in the A region of IGF I are important for maintaining binding to the type 2 IGF receptor, and that these determinants are different from those required for maintaining high affinity for the type 1 IGF receptor.  相似文献   

3.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

4.
Rat gro/melanoma growth-stimulating activity is a dimer composed of two identical subunits. Each subunit consists of 72 amino-acid residues and contains two disulfide bridges. In order to obtain information on the structure responsible for chemotactic activity, various fragments of gro were prepared and tested for their ability to induce chemotaxis. None of the fragments corresponding to residues 1-6, 1-21, 12-31, 36-50 or 52-72 was active as a chemoattractant. Reduced and carboxymethylated gro as well as the tryptic peptide consisting of three peptides, residues 9-21, 28-45 were and 49-61, linked by two disulfide bonds Cys-9-Cys-35 and Cys-11-Cys-51, were inactive. Also, these, peptides did not inhibit the chemotactic activity of gro. Rat gro lacking the N-terminal 6 residues had a reduced activity and the one lacking the C-terminal Lys was as active as intact gro. Therefore, an almost entire portion of the molecule including disulfide cross-links is required for chemotactic activity.  相似文献   

5.
The giant extracellular hemoglobin (3,800 kDa) of the oligochaete Lumbricus terrestris consists of four subunits: a monomer (chain I), two subunits each of about 35 kDa (chains V and VI), and a disulfide-bonded trimer (50 kDa) of chains II, III, and IV. The complete amino acid sequence of chain I was determined: it consists of 142 amino acid residues and has a molecular weight of 16,750 including a heme group. Fifty-nine residues (42%) were found to be identical with those in the corresponding positions in Lumbricus chain II (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 257, 9005-9015); 45 (32%), 56 (40%), 44 (31%), and 45 (32%) residues were found to be in identical positions in the sequences of chains I, IIA, IIB, and IIC, respectively, of Tylorrhynchus heterochaetus hemoglobin (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). When the sequences of all six annelid chains are compared, 18 invariant residues are found in the first 104 residues of the molecule; very little homology exists among the annelid chains in the carboxyl-terminal 38-residue region. Nine of the 18 invariant residues are also found in the human beta-globin chain.  相似文献   

6.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) carries out multiple regulatory and transport functions, and disruption of IGF2R function has been implicated as a mechanism to increase cell proliferation. Several missense IGF2R mutations have been identified in human cancers, including the following amino acid substitutions occurring in the extracytoplasmic domain of the receptor: Cys-1262 --> Ser, Gln-1445 --> His, Gly-1449 --> Val, Gly-1464 --> Glu, and Ile-1572 --> Thr. To determine what effects these mutations have on IGF2R function, mutant and wild-type FLAG epitope-tagged IGF2R constructs lacking the transmembrane and cytoplasmic domains were characterized for binding of insulin-like growth factor (IGF)-II and a mannose 6-phosphate-bearing pseudoglycoprotein termed PMP-BSA (where PMP is pentamannose phosphate and BSA is bovine serum albumin). The Ile-1572 --> Thr mutation eliminated IGF-II binding while not affecting PMP-BSA binding. Gly-1449 --> Val and Cys-1262 --> Ser each showed 30-60% decreases in the number of sites available to bind both (125)I-IGF-II and (125)I-PMP-BSA. In addition, the Gln-1445 --> His mutant underwent a time-dependent loss of IGF-II binding, but not PMP-BSA binding, that was not observed for wild type. In all, four of the five cancer-associated mutants analyzed demonstrated altered ligand binding, providing further evidence that loss of IGF2R function is characteristic of certain cancers.  相似文献   

7.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

8.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

9.
In addition to NS3 protease, the NS4A protein is required for efficient cleavage of the nonstructural protein region of the hepatitis C virus polyprotein. To investigate the function and the sequence of NS4A required for the enhancement of NS3 protease activity, we developed an in vitro NS3 protease assay system consisting of three purified viral elements: (i) a recombinant NS3 protease which was expressed in Escherichia coli as a maltose-binding protein-NS3 fusion protein (MBP-NS3), (ii) synthetic NS4A fragments, and (iii) a synthetic peptide substrate which mimics the NS5A/5B junction. We showed that the NS3 protease activity of MBP-NS3 was enhanced in a dose-dependent manner by 4A18-40, which is a peptide composed of amino acid residues 18 to 40 of NS4A. The optimal activity was observed at a 10-fold molar excess of 4A18-40 over MBP-NS3. The coefficient for proteolytic efficiency, kcat/Km, of NS3 protease was increased by about 40 times by the addition of a 10-fold molar excess of 4A18-40. Using a series of truncations of 4A18-40, we estimated that amino acid residues 22 to 31 in NS4A (SVVIVGRIIL) constituted the core sequence for the effector activity. Single-substitution experiments with 4A21-34, a peptide composed of amino acid residues 21 to 34 of NS4A, suggested the importance of several residues (Val-23, Ile-25, Gly-27, Arg-28, Ile-29, and Leu-31) for its activity. In addition, we found that some single-amino-acid substitutions in 4A21-34 were able to inhibit the enhancement of NS3 protease activity by 4A18-40. This approach has potential as a novel strategy for inhibiting the NS3 protease activity important for hepatitis C virus proliferation.  相似文献   

10.
In addition to their ability to stimulate cell proliferation, polypeptide growth factors are able to maintain cell survival under conditions that otherwise lead to apoptotic death. Growth factors control cell viability through regulation of critical intracellular signal transduction pathways. We previously characterized C2 muscle cell lines that lacked endogenous expression of insulin-like growth factor II (IGF-II). These cells did not differentiate but underwent apoptotic death in low-serum differentiation medium. Death could be prevented by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we analyze the signaling pathways involved in growth factor-mediated myoblast survival. PDGF treatment caused sustained activation of extracellular-regulated kinases 1 and 2 (ERK1 and -2), while IGF-I only transiently induced these enzymes. Transient transfection of a constitutively active Mek1, a specific upstream activator of ERKs, maintained myoblast viability in the absence of growth factors, while inhibition of Mek1 by the drug UO126 blocked PDGF-mediated but not IGF-stimulated survival. Although both growth factors activated phosphatidylinositol 3-kinase (PI3-kinase) to similar extents, only IGF-I treatment led to sustained stimulation of its downstream kinase, Akt. Transient transfection of a constitutively active PI3-kinase or an inducible Akt promoted myoblast viability in the absence of growth factors, while inhibition of PI3-kinase activity by the drug LY294002 selectively blocked IGF- but not PDGF-mediated muscle cell survival. In aggregate, these observations demonstrate that distinct growth factor-regulated signaling pathways independently control myoblast survival. Since IGF action also stimulates muscle differentiation, these results suggest a means to regulate myogenesis through selective manipulation of different signal transduction pathways.  相似文献   

11.
Pentamannose 6-phosphate/trilysine substituted aprotinin (PMP-lys-aprotinin) and insulin like growth factor II (IGF II) were used as affinity ligands for the mannose 6-phosphate (M6P) and IGF II binding sites of the M6P/IGF II receptor. Both ligands were cross linked to intact receptor and tryptic fragments of the receptor. The pattern of receptor fragments with M6P and IGF II binding sites differed indicating that the two binding sites are located on different segments of the receptor. The receptor was incubated with [125I]IGF II and pentamannose 6-phosphate substituted bovine serum albumin (PMP-BSA). From these mixtures [125I]IGF II receptor complexes could be precipitated with antibodies against the PMP-BSA indicating that the M6P/IGF II receptor can bind simultaneously IGF II and M6P-containing ligands.  相似文献   

12.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   

13.
All mammalian cGMP-dependent protein kinases (PKGs) are dimeric. Dimerization of PKGs involves sequences located near the amino termini, which contain a conserved, extended leucine zipper motif. In PKG Ibeta this includes eight Leu/Ile heptad repeats, and in the present study, deletion and site-directed mutagenesis have been used to systematically delete these repeats or substitute individual Leu/Ile. The enzymatic properties and quaternary structures of these purified PKG mutants have been determined. All had specific enzyme activities comparable to wild type PKG. Simultaneous substitution of alanine at four or more of the Leu/Ile heptad repeats ((L3A/L10A/L17A/I24A), (L31A/I38A/L45A/I52A), (L17A/I24A/L31A/I38A/L45A/I52A), and (L3A/L10A/L45A/I52A)) of the motif produces a monomeric PKG Ibeta. Mutation of two Leu/Ile heptad repeats can produce either a dimeric (L3A/L10A) or monomeric (L17A/I24A and L31A/I38A) PKG. Point mutation of Leu-17 or Ile-24 (L17A or I24A) does not disrupt dimerization. These results suggest that all eight Leu/Ile heptad repeats are involved in dimerization of PKG Ibeta. Six of the eight repeats are sufficient to mediate dimerization, but substitutions at some positions (Leu-17, Ile-24, Leu-31, and Ile-38) appear to have greater impact than others on dimerization. The Ka of cGMP for activation of monomeric mutants (PKG Ibeta (delta1-52) and PKG Ibeta L17A/I24A/L31A/I38A/L45A/I52A) is 2- to 3-fold greater than that for wild type dimeric PKG Ibeta, and there is a corresponding 2- to 3-fold increase in cGMP-dissociation rate of the high affinity cGMP-binding site (site A) of these monomers. These results indicate that dimerization increases sensitivity for cGMP activation of the enzyme.  相似文献   

14.
Phospho-DARPP-32 (where DARPP-32 is dopamine- and cAMP-regulated phosphoprotein, Mr 32,000), its homolog, phospho-inhibitor-1, and inhibitor-2 are potent inhibitors (IC50 approximately 1 nM) of the catalytic subunit of protein phosphatase-1 (PP1). Our previous studies have indicated that a region encompassing residues 6-11 (RKKIQF) and phospho-Thr-34, of phospho-DARPP-32, interacts with PP1. However, little is known about specific regions of inhibitor-2 that interact with PP1. We have now characterized in detail the interaction of phospho-DARPP-32 and inhibitor-2 with PP1. Mutagenesis studies indicate that within DARPP-32 Phe-11 and Ile-9 play critical roles, with Lys-7 playing a lesser role in inhibition of PP1. Pro-33 and Pro-35 are also important, as is the number of amino acids between residues 7 and 11 and phospho-Thr-34. For inhibitor-2, deletion of amino acids 1-8 (I2-(9-204)) or 100-204 (I2-(1-99)) had little effect on the ability of the mutant proteins to inhibit PP1. Further deletion of residues 9-13 (I2-(14-204)) resulted in a large decrease in inhibitory potency (IC50 approximately 800 nM), whereas further COOH-terminal deletion (I2-(1-84)) caused a moderate decrease in inhibitory potency (IC50 approximately 10 nM). Within residues 9-13 (PIKGI), mutagenesis indicated that Ile-10, Lys-11, and Ile-13 play critical roles. The peptide I2-(6-20) antagonized the inhibition of PP-1 by inhibitor-2 but had no effect on inhibition by phospho-DARPP-32. In contrast, the peptide D32-(6-38) antagonized the inhibition of PP1 by phospho-DARPP-32, inhibitor-2, and I2-(1-120) but not I2-(85-204). These results indicate that distinct amino acid motifs contained within the NH2 termini of phospho-DARPP-32 (KKIQF, where italics indicate important residues) and inhibitor-2 (IKGI) are critical for inhibition of PP1. Moreover, residues 14-84 of inhibitor-2 and residues 6-38 of phospho-DARPP-32 share elements that are important for interaction with PP1.  相似文献   

15.
The action of thermally activated tritium on the purple membrane and delipidated bacteriorhodopsin fragments has been studied, tritium incorporation into specified amino acid residues being quantified by Edman degradation. The membrane environment was found to affect the accessibility of amino acid residues for tritium. Bacteriorhodopsin fragments 14-31, 45-63, 81-89, 171-179, and 210-225 were localized to the membrane interior while fragments 4-12, 32-44, 64-65, 73-80, and 156-170 should lie outside or close to membrane surface. It was demonstrated that the peptide fragments joining transmembrane rods are not fully exposed to the solution.  相似文献   

16.
The surface topography of IGF I(insulin-like growth factor I) was investigated by chemical modification of amino acid residues in free IGF I and bound to type I IGF receptor or to monoclonal antibody MAB43. Tyrosine residues were modified either by chloramine-T or lactoperoxidase catalyzed iodination. In the free IGF I molecule, all 3 tyrosine residues, A19 (Tyr-60), B25 (Tyr-24), and C2 (Tyr-31), were iodinated. Monoclonal antibody MAB43 protected IGF I against modification at tyrosine residue A19, and in the type I IGF receptor-IGF I complex, all 3 tyrosine residues were shielded against iodine incorporation. These results allow the prediction of the binding domains in the IGF I molecule. The minimal receptor binding site in IGF I would include amino acid residues B25 to C2 and, possibly, the C-terminal part of the A-domain with tyrosine residue A19.  相似文献   

17.
Members of the FXYD family are tissue-specific regulators of the Na,K-ATPase. Here, we have investigated the contribution of amino acids in the transmembrane (TM) domain of FXYD7 to the interaction with Na,K-ATPase. Twenty amino acids of the TM domain were replaced individually by tryptophan, and combined mutations and alanine insertion mutants were constructed. Wild type and mutant FXYD7 were expressed in Xenopus oocytes with Na,K-ATPase. Mutational effects on the stable association with Na,K-ATPase and on the functional regulation of Na,K-ATPase were determined by co-immunoprecipitation and two-electrode voltage clamp techniques, respectively. Most residues important for the structural and functional interaction of FXYD7 are clustered in a face of the TM helix containing the two conserved glycine residues, but others are scattered over two-thirds of the FXYD TM helix. Ile-35, Ile-43, and Ile-44 are only involved in the stable association with Na,K-ATPase. Glu-26, Met-30, and Ile-44 are important for the functional effect and/or the efficient association of FXYD7 with Na,K-ATPase, consistent with the prediction that these amino acids contact TM domain 9 of the alpha subunit (Li, C., Grosdidier, A., Crambert, G., Horisberger, J.-D., Michielin, O., and Geering, K. (2004) J. Biol. Chem. 279, 38895-38902). Several amino acids that are not implicated in the efficient association of FXYD7 with the Na,K-ATPase are specifically involved in the functional effect of FXYD7. Leu-32 and Phe-37 influence the apparent affinity for external K+, whereas Val-28 and Ile-42 are implicated in the apparent affinity for both external K+ and external Na+. These amino acids act in a synergistic way. These results highlight the important structural and functional role of the TM domain of FXYD7 and delineate the determinants that mediate the complex interactions of FXYD7 with Na,K-ATPase.  相似文献   

18.
19.
Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A decapeptide corresponding to residues 35-44(-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-) of p21ras was synthesized. It was found that peptide causes precipitation of some proteins from the Triton X-100 lysate of NIH 3T3 EJ cells. SDS-PAGE demonstrated the presence of many proteins in this precipitate. The peptide labeled with [125I]Bolton-Hunter reagent specifically recognized four proteins of M. W. 27, 35, 50 and 85 kDa. The order of charged amino acid residues in the fragment 35-44 of p21ras is "complementary" to that of the substrate sequence of tyrosine-specific protein kinases (-Arg-X-X-Glu-Asp-X-X-Tyr-). It is suggested that p21ras proteins directly regulate phosphorylation of the target proteins of these kinases. A model for functioning of p21ras proteins predicts the presence in their structure of certain sites homologous to sequences recognizable by tyrosine-specific kinases. Indeed two such sites are present in the sequences of all p21ras proteins, namely the residues 88-92 and 104-108.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号