首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

2.
We report a case of mycetoma caused by Rhodococcus in a 62-year-old man who presented with multiple draining sinuses of the left foot. Biopsy specimen showed granulomatous reaction and microabcesses contained granules. These granules were composed by rod and coccoid Gram-positive and partially acid-fast elements. Culture grew a Nocardia-like organism, confirmed at the Center for Disease Control as Rhodococcus spp.  相似文献   

3.
The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure.  相似文献   

4.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

5.
Rhodococcus rhodochrous was grown in the presence of oneof three plasticizers: bis 2-ethylhexyl adipate (BEHA), dioctyl phthalate (DOP) ordioctyl terephthalate (DOTP). None of the plasticizers were degraded unless anothercarbon source, such as hexadecane, was also present. When R. rhodochrous was grownwith hexadecane as a co-substrate, BEHA was completely degraded and the DOP was degraded slightly. About half of the DOTP was degraded, if hexadecane were present.In all of these growth studies, the toxicity of the media, which was assessed usingthe Microtox assay, increased as the organism degraded the plasticizer. In each case, therewas an accumulation of one or two intermediates in the growth medium as the toxicityincreased. One of these was identified as 2-ethylhexanoic acid and it was observed forall three plasticizers. Its concentration increased until degradation of the plasticizershad stopped and it was always present at the end of the fermentation. The other intermediatewas identified as 2-ethylhexanol and this was only observed forgrowth in the presence of BEHA. The alcohol was observed early in the growth studies with BEHA and haddisappeared by the end of the experiment. Both the 2-ethylhexanol and 2-ethylhexanoicacid were shown to be toxic and their presence explained the increase of toxicity asthe fermentations proceeded. The appearance of these intermediates was consistent with similar degradation mechanisms for all three plasticizers involving hydrolysisof the ester bonds followed by oxidation of the released alcohol.  相似文献   

6.
Resting cells of Rhodococcus equi A4 (free or immobilized in hydrogels) produced monomethyl isophtalate 1c and monomethyl terephtalate 2c from methyl-3-cyanobenzoate 1a and methyl-4-cyanobenzoate 2a, respectively, via the intermediate carboxamides 1b and 2b. The use of dried immobilized biocatalysts resulted in an increased formation of the unwanted cyano acids 1d and 2d. © Rapid Science Ltd. 1998  相似文献   

7.
Comparative study of sulfoxidation activity of free and immobilized Rhodococcus rhodochrous IEGM 66 cells was performed. Free Rhodococcus cells (in the presence of 0.1 vol % n-hexadecane) displayed maximal oxidative activity towards thioanisole (0.5 g/l), a prochiral organic sulfide, added after 48-h cultivation of bacterial cells. Higher sulfide concentrations inhibited sulfoxidation activity of Rhodococcus. Use of immobilized cells allowed the 2-day preparatory stage to be omitted and a complete thioanisole bioconversion to be achieved in 24 h in the case that biocatalyst and 0.5 g/l thioanisole were added simultaneously. The biocatalyst immobilized on gel provides for complete thioanisole transformation into (S)-thioanisole sulfoxide (optical purity of 82.1%) at high (1.0-1.5 g/l) concentrations of sulfide substrate.  相似文献   

8.
Like other highly urbanized and industrialized estuaries, the Seine estuary (France) has, for decades, received high inputs of polycyclic aromatic hydrocarbons (PAHs). In order to estimate the bioremediation potentials and to identify the bacterial species involved in hydrocarbon degradation, we used microcosms containing seawater from the Seine estuary supplemented with either naphthalene, phenanthrene, fluorene or pyrene. In the microcosms enriched with naphthalene or phenanthrene, hydrocarbon biodegradation was significant within 9 weeks (43% or 46%, respectively), as shown by analyses in GC-MS. In similar microcosms incubated also with naphthalene or phenanthrene, analysis of the 16S rRNA gene sequences (DNA and cDNA) with denaturing gradient gel electrophoresis and clone libraries indicated that the PAH-degrading communities were dominated by Cycloclasticus spp., confirming their universal key role in degradation of low-molecular-weight PAHs in marine environments. However, in contrast to previous studies, we found that Pseudomonas spp. also degraded naphthalene and phenanthrene in seawater; this occurred only after 21 days, as was confirmed by real-time PCR. Although this genus has been abundantly described in the literature as a good PAH-degrading bacterial group in soil or in sediment, to our knowledge, this is the first evidence of a significant fitness in PAH degradation in seawater.  相似文献   

9.
Summary Methyl tert-Butyl Ether (MTBE) has been used in gasoline as a substitute for lead-based additives, which have been demonstrated to be toxic. MTBE however, is persistent in soil and water, showing high affinity for water and low affinity for soil, and has become an important contaminant. Therefore, the aim of this work was to isolate and identify soil microorganisms capable of degrading MTBE. Two samples were taken from a gasoline-contaminated soil at a service station and 59 different bacterial strains were isolated by enrichment culture with three consecutive selective transfers. Biochemical and morphological characterization of the bacterial isolates classified them into the following groups: Bacillus, Rhodococcus, Micrococcus, Aureobacterium and Proteus. Twelve strains were selected for evaluation of MTBE biodegradation depending on visual growth and biomass production of the isolates in minimal salt broth. Six strains significantly reduced MTBE concentration (22–37%) compared to an abiotic control after 5 days of incubation. Although it has been considered that MTBE is degraded mainly by cometabolism, our results demonstrate that these microorganisms are able to reduce MTBE concentration when MTBE is the sole source of carbon.  相似文献   

10.
Aerobic biodegradation of nonylphenol by cold-adapted bacteria   总被引:12,自引:0,他引:12  
Three strains capable of mineralizing nonylphenol as sole carbon source were isolated from a sample of contaminated soil and characterized as two Pseudomonas spp. and a Stenotrophomonas sp. The two Pseudomonas spp. expressed characteristics typical of psychrophiles growing optimally of 10 °C and capable of growing at 0 °C. The Stenotrophomonas sp. was more likely psychrotrophic because it had an optimal temperature between 14 and 22 °C although it was not capable of growing at 4 °C. At 14 °C, one of the Pseudomonas spp. exhibited the highest rate of degradation of nonylphenol (4.4 mg l–1 d–1), when compared with axenic or mixed cultures of the isolates. This study represents, to the best of our knowledge, the first reported case of cold-adapted microorganisms capable of mineralizing nonylphenol.  相似文献   

11.
Rhodococcus sp. strain DTB (DSM 44534) was grown on a mixture of (R,R)-, (S,S)- and meso-bis-(1-chloro-2-propyl) ether (BCPE) as the sole source of carbon and energy. During BCPE degradation 1'-chloro-2'-propyl-3-chloro-2-prop-1-enyl-ether (DVE), 1-chloro-2-propanol and chloroacetone intermediates were formed. The BCPE or DVE stereoisomers were metabolized in consecutive order via scission of the ether bond, with discrimination against the (R) configuration. Resting cell suspensions of Rhodococcus pregrown on BCPE showed a preferential attack of the (S)-configured ether-linked carbons, resulting in an enantioselective enrichment of (R,R)-BCPE. Microbial discrimination of BCPE or DVE isomers and chemical conversion of the intermediates to 1-chloro-2-propanol allowed the identification of the configuration of all BCPE isomers and the DVE enantiomers. Elucidation of the absolute configuration of the 1-chloro-2-propanol isomers was achieved by enantioselective chemical synthesis.  相似文献   

12.
The influences of concentration of acrylamide, pH, temperature, duration of storage of encapsulated cells and presence of different metals and chelators on the ability of immobilized cells of a Rhodococcus sp. to degrade acrylamide were evaluated. Immobilized cells (3 g) rapidly degraded 64 and 128 mM acrylamide in 3 and 5 h, espectively, whereas free cells took more than 24 h to degrade 64 mM acrylamide. An acrylamide concentration of 128 mM inhibited the growth of the free cells. Immobilized bacteria were slow to degrade acrylamide at 10 °C. Less than 60% of acrylamide was degraded in 4 h. However, 100% of the compound was degraded in less than 3 h at 28 °C and 45 °C. The optimum pH for the degradation of acrylamide by encapsulated cells was pH 7.0. Less than 10% of acrylamide was degraded at pH 6.0, while ca. 60% of acrylamide was degraded at pH 8.0 and 8.5. Copper and nickel inhibited the degradation, suggesting the presence of sulfhydryl (-SH) groups in the active sites of the acrylamide degrading amidase. Iron enhanced the rates of degradation and chelators (EDTA and 1,10 phenanthroline) reduced the rates of degradation suggesting the involvement of iron in its active site(s) of the acrylamide-degrading-amidase. Immobilized cells could be stored up to 10 days without any detectable loss of acrylamide-degrading activity.  相似文献   

13.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

14.
Two strains of 1,1,1-trichloroethane (TCA)-degrading bacteria, TA5 and TA27, were isolated from soil and identified as Mycobacterium spp. Strains TA5 and TA27 could degrade 25 and 75 mg. liter of TCA(-1) cometabolically in the presence of ethane as a carbon source, respectively. The compound 2,2,2-trichloroethanol was produced as a metabolite of the degradation process.  相似文献   

15.
The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation.N-Nitrosodimethylamine (NDMA) is a potent carcinogen that has recently been detected in groundwater, wastewater, and drinking water (1, 2, 17, 18). It forms as a disinfection byproduct in wastewater and drinking water treated with chloramine and other disinfectants (17, 18, 43). NDMA has also been found to be present in aquifers at several military sites that have used 1,1-dimethylhydrazine, a component of liquid rocket propellant that contained NDMA as an impurity (6, 9). Although there is presently no federal maximum contaminant level for NDMA in drinking water, a risk assessment conducted by the U.S. Environmental Protection Agency suggested that concentrations as low as 0.7 ng/liter can increase lifetime cancer risk by 1 × 10−6 (34). In addition, California currently has a 10 ng/liter notification level for NDMA concentrations in drinking water and has recently recommended an even lower public health goal of 3 ng/liter (3, 20). Thus, the presence of even trace concentrations of this chemical in drinking water represents a potential public health concern.The rates and extents of NDMA biodegradation in natural environments, including surface water, sludges, and soils, are highly variable. In some studies, the compound has been reported to be recalcitrant or only partially biodegraded (16, 30, 31); in others, fairly rapid and extensive biodegradation has been previously observed (2, 13, 22, 40). Few studies have been conducted to examine NDMA biodegradation in groundwater. However, the persistence of NDMA derived originally from 1,1-dimethylhydrazine-based rocket fuel over decades in some groundwater aquifers (e.g., Rocky Mountain Arsenal, CO; former Air Force Plant PJKS, CO; and Aerojet Superfund Site, CA) suggests that this molecule can be very recalcitrant (8, 9, 35). At sites where biodegradation has been observed, the organisms responsible and the microbial degradation pathways are largely unknown.The metabolism of NDMA and other nitrosamines by mammals has received extensive study. NDMA requires metabolic activation to the methyldiazonium ion (a strong alkylating agent) to exert its genotoxic effects (1, 19, 34). This activation reaction is catalyzed by specific isozymes of the cytochrome P-450-dependent mixed-function oxidase system and proceeds through an initial α-hydroxylation reaction. Alternately, NDMA can be oxidized by the P-450 system via a denitrosation route, which does not result in the formation of a highly carcinogenic intermediate (11, 28, 37).The bacterial transformation of NDMA has not been studied in significant detail. Several bacteria expressing broad-specificity monooxygenase enzymes have been reported to degrade NDMA via cometabolism. These include the propanotrophs Rhodococcus sp. strain RHA1 (25, 26) and Rhodococcus ruber ENV425 (29) as well as Mycobacterium vaccae JOB5 (25), the methanotroph Methylosinus trichosporium OB3b (42), and the toluene oxidizer Pseudomonas mendocina KR1 (7). We recently characterized the pathway of NDMA transformation used by P. mendocina KR1, a bacterium that utilizes the enzyme toluene-4-monooxygenase (T4MO) to cometabolically degrade NDMA and other anthropogenic pollutants (7, 38). The pathway of NDMA transformation by KR1 differs from the two pathways described for mammals. A majority of the NDMA metabolized by T4MO in this strain is oxidized to N-nitrodimethylamine (NTDMA) and then further to N-nitromethylamine (NTMA), which accumulates as a terminal product (7).In this report, we describe the pathway used by the propanotroph R. ruber ENV425 to catabolize NDMA. This strain was originally isolated from turf soil, where propane was used as the sole carbon source, and was previously reported to oxidize methyl tertiary-butyl ether and other gasoline oxygenates (27). Our data show that the pathway of NDMA degradation mediated by strain ENV425 differs from that mediated by P. mendocina KR1. Rather, the pathway used for transformation of NDMA by ENV425 appears to be similar to the denitrosation pathway catalyzed by various P-450 isozymes in mammals, resulting in the production of nitric oxide (NO), nitrite, nitrate, formaldehyde, formate, and methylamine (MA) (11, 12, 28, 39). A significant fraction of the carbon in the NDMA molecule was released as CO2 by strain ENV425, although growth on NDMA could not be confirmed. However, the bacterium was observed to utilize NDMA as well as the NDMA-degradation intermediates MA and nitrate as sources of nitrogen during growth on propane as a sole carbon and energy source.  相似文献   

16.
We previously isolated Rhodococcus sp. 065240, which catalyzes the defluorination of benzotrifluoride (BTF). In order to investigate the mechanism of this degradation of BTF, we performed proteomic analysis of cells grown with or without BTF. Three proteins, which resemble dioxygenase pathway enzymes responsible for isopropylbenzene degradation from Rhodococcus erythropolis BD2, were induced by BTF. Genomic PCR and DNA sequence analysis revealed that the Rhodococcus sp. 065240 carries the gene cluster, btf, which is highly homologous to the ipb gene cluster from R. erythropolis BD2. A mutant strain, which could not catalyze BTF defluorination, was isolated from 065240 strain by UV mutagenesis. The mutant strain had one mutation in the btfT gene, which encodes a response regulator of the two component system. The defluorinating ability of the mutant strain was recovered by complementation of btfT. These results suggest that the btf gene cluster is responsible for degradation of BTF.  相似文献   

17.
Two strains of 1,1,1-trichloroethane (TCA)-degrading bacteria, TA5 and TA27, were isolated from soil and identified as Mycobacterium spp. Strains TA5 and TA27 could degrade 25 and 75 mg · liter of TCA−1 cometabolically in the presence of ethane as a carbon source, respectively. The compound 2,2,2-trichloroethanol was produced as a metabolite of the degradation process.  相似文献   

18.
Two microorganisms (NDKK48 and NDKY76A) that degrade long-chain cyclic alkanes (c-alkanes) were isolated from soil samples. Strains NDKK48 and NDKY76A were identified as Rhodococcus sp. and Gordonia sp., respectively. Both strains used not only normal alkane (n-alkane) but also c-alkane as a sole carbon and energy source, and the strains degraded more than 27% of car engine base oil (1% addition).  相似文献   

19.
烷烃降解基因alk研究进展   总被引:4,自引:0,他引:4  
很多微生物都可以利用直链烷烃作为唯一碳源和能源 ,目前对该代谢机理的遗传学研究已相当深入。其典型菌株Pseudomonasputida可利用C6~C1 2的烷烃 ,编码这些参与烷烃降解的酶的基因位于两个基因簇alkBFGHJKL和alkST上 ,且此代谢途径受一个正反馈调节机制及两个不同的全局控制信号调控。其它可降解烷烃菌株的烷烃氧化基因与P .Putida中相应基因有较高的同源性。国内外的研究表明 ,alk基因可望应用于生物清污、微生物提高石油采收率及精细化工等诸多领域 。  相似文献   

20.
At an alkaline pH and in aqueous solution, carbaryl hydrolyses to form 1-naphthol, methylamine and carbon dioxide, but it is much more stable at an acid pH. Two bacterial isolated from garden soil, Pseudomonas sp. (NCIB 12042) and Rhodococcus sp. (NCIB 12038), could grow on carbaryl as sole carbon and nitrogen source at pH 6.8 but failed to metabolize carbaryl rapidly. Both could use 1-naphthol as sole carbon source and NCIB 12042 metabolized 1-naphthol via salicylic acid which induced higher expression of enzymes in the pathway. Strain NCIB 12038 metabolized 1-naphthol via salicylic and gentisic acids. In contrast, Pseudomonas sp. (NCIB 12043) was selected in a soil perfusion column enrichment at pH 5.2 and metabolized carbaryl rapidly to 1-naphthol and methylamine. 1-Naphthol was metabolized via gentisic acid. Neither salicylate nor gentisate induced higher expression of enzymes for 1-naphthol catabolism in NCIB 12038 and NCIB 12043.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号