首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paramecium tetraurelia wild-type (7S) cells respond to 2.5 mm veratridine by immediate trichocyst exocytosis, provided [Ca2+] o (extracellular Ca2+ concentration) is between about 10–4 to 10–3 m as in the culture medium. Exocytosis was analyzed by light scattering, light and electron microscopy following quenched-flow/ freeze-fracture analysis. Defined time-dependent stages occurred, i.e., from focal (10 nm) membrane fusion to resealing, all within 1 sec.Veratridine triggers exocytosis also with deciliated 7S cells and with pawn mutants (without functional ciliary Ca channels). Both chelation of Ca2+ o or increasing [Ca2+] o to 10–2 m inhibit exocytotic membrane fusion. Veratridine does not release Ca2+ from isolated storage compartments and it is inefficient when microinjected. Substitution of Na+ o for N-methylglucamine does not inhibit the trigger effect of veratridine which also cannot be mimicked by aconitine or batrachotoxin. We conclude that, in Paramecium cells, veratridine activates Ca channels (sensitive to high [Ca2+] o ) in the somatic, i.e., nonciliary cell membrane and that a Ca2+ influx triggers exocytotic membrane fusion. The type of Ca channels involved remains to be established.We thank Dr. C. Kung (Madison, WI) for providing the pawn mutant, Drs. G. Lehle and R. Waldschütz-Schüppel (Konstanz, Germany) for their help with light scattering experiments, and Ms. E. Dassler and D. Bliestle for continuous help during the extensive photographic documentation. This work has been supported by Deutsche Forschungsgemeinschaft, Schwerpunkt Neue mikroskopische Techniken für Biologie und Medizin (grant P178/11) and SFB156/B4.  相似文献   

2.
Chemorepellents in Paramecium and Tetrahymena   总被引:1,自引:1,他引:0  
Although Paramecium has been widely used as a model sensory cell to study the cellular responses to thermal, mechanical and chemoattractant stimuli, little is known about their responses to chemorepellents. We have used a convenient capillary tube repellent bioassay to describe 4 different compounds that are chemorepellents for Paramecium and compared their response with those of Tetrahymena. The classical Paramecium t-maze chemokinesis test was also used to verify that this is a reliable chemorepellent assay. The first two compounds, GTP and the oxidant NBT, are known to be depolarizing chemorepellents in Paramecium but this is the first report of them as repellents in Tetrahymena. The second two compounds, the secretagogue alcian blue and the dye cibacron blue, have not previously been described as chemorepellents in either of these ciliates. Two other compounds, the secretagogue AED and the oxidant cytochrome c, were found to be repellents to Paramecium but not to Tetrahymena. The repellent nature of each of these compounds is not related to toxicity because cells are completely viable in all of them. More importantly, all of these repellents are effective at micromolar to nanomolar concentrations, providing an opportunity to use them as excitatory ligands in future works concerning their membrane receptors and possible receptor operated ion channels.  相似文献   

3.
Pituitary adenylate cyclase activating peptide (PACAP-38) is a peptide hormone which functions in many mammalian systems, including the nervous and digestive systems. Using in vivo behavioral studies, we have found that this hormone functions as a chemorepellent in Tetrahymena thermophila with an EC50 of 10 nM. Cells previously adapted to PACAP-38 were found to be adapted to lysozyme, and vice versa. Furthermore, the in vivo behavioral activity of PACAP-38 was blocked by addition of the anti-lysozyme receptor antibody, 5545. Chemorepellent activity of PACAP-38 was also inhibited by the addition of neomycin sulfate (inhibition constant K i=0.080 μmol · l−1), a competitive inhibitor of lysozyme binding to its receptor. PACAP-38 is a more potent and specific agonist for the lysozyme receptor than either intact lysozyme or CB2, a 24-amino acid fragment of lysozyme. Accepted: 11 October 1999  相似文献   

4.
It is well established that beta-adrenoceptor stimulation activates PKA and alpha(1)-adrenoceptor stimulation activates PKC. In normal ventricular myocytes, acute activation of alpha(1)-adrenoceptors inhibits beta-adrenoceptor stimulated L-type Ca current (I(Ca-L)) and direct activation of epsilonPKC leads to I(Ca-L) inhibition. Because increased PKC activity has been observed chronically in in vivo setting such as failing human heart, we hypothesized that chronic in vivo activation of epsilonPKC alters I(Ca-L) and its response to adrenergic stimulation. Therefore, we investigated the interaction between beta- and alpha(1)-adrenoceptors vis-à-vis I(Ca-L) in myocytes from transgenic mice (TG) with cardiac specific constitutive activation of epsilonPKC (epsilonPKC agonist). Whole-cell I(Ca-L) was recorded from epsilonPKC agonist TG mice and age-matched non-TG (NTG) littermates under: (1) basal condition, (2) beta-adrenoceptor agonist, isoproterenol (ISO), and (3) ISO plus alpha(1)-adrenoceptor agonist, methoxamine. The present results are the first to demonstrate that chronic in vivo activation of epsilonPKC leads to reduced basal I(Ca-L) density. beta-adrenoceptor activation of I(Ca-L) is blunted in epsilonPKC agonist TG mice. alpha-adrenoceptor cross-talk with beta-adrenoceptor signaling pathways vis-à-vis L-type Ca channels is impaired in epsilonPKC agonist TG mice. The diminished response to ISO and methoxamine suggests a protective feedback regulatory mechanism in epsilonPKC agonist TG mice and could be vital in the settings of excessive release of catecholamines during heart failure.  相似文献   

5.
We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein. (v) Finally, Mn2+ entry during veratridine stimulation, documented by Fura-2 fluorescence quenching, may indicate activation of unspecific Me2+ channels by veratridine. Our data have some bearing on analysis of other cells, notably neurons, whose response to veratridine is of particular and continous interest. Received: 8 December 1998/Revised: 2 March 1999  相似文献   

6.
Platelet-activating factor (PAF) is synthesized and secreted by macrophages in response to inflammatory stimuli. When exogenously applied to human monocyte derived macrophages (HMDMs), PAF induces a rapid rise in cytosolic free calcium (Ca i ) believed to be an early triggering event in macrophage activation. We investigated PAF-induced Ca2+ signaling in HMDMs using the calcium indicator Fura-2, combining single cell ratio fluorimetry and digital video imaging with whole-cell recording techniques. Application of PAF (20 ng/ml) to adherent macrophages induced transient increases in Ca, that were biphasic, consisting of an initial phase that could be observed in Ca2+-free solutions and a second phase that was critically dependent upon Ca2+ entry. When Mn2+ was applied to cells in the presence and absence of Ca2+, PAF increased the rate of Mn2+ entry rate only when Ca2+ was absent. PAF increased the rate of Ba2+ entry even when measured in the presence of external Ca2+. Ca2+ entry was reversibly inhibited in the presence of external La3+ (1 mm). Data obtained from simultaneous voltage-clamp/microfluorimetry experiments demonstrated the activation of a nonselective cation current which closely paralleled the rising phase of the Ca i transient. We investigated whether the non-selective cation conductance provided for the bulk of the agonist-induced Ca2+ influx. Changes in Ca i following removal of extracellular Ca2+ (Ca o ) during the agonist-induced Ca i response were not associated with changes in whole-cell current. The inability to detect whole-cell current changes correlated with a decrease in Ca o suggests that the bulk of the Ca2+ influx was not through the nonselective conductance and either does not occur through a conductance pathway or occurs via a parallel pathway consisting of channels which are both low conductance and highly Ca2+ selective.  相似文献   

7.
Caffeine causes a [Ca2+] i increase in the cortex of Paramecium cells, followed by spillover with considerable attenuation, into central cell regions. From [Ca2+]rest i ∼50 to 80 nm, [Ca2+]act i rises within ≤3 sec to 500 (trichocyst-free strain tl) or 220 nm (nondischarge strain nd9–28°C) in the cortex. Rapid confocal analysis of wildtype cells (7S) showed only a 2-fold cortical increase within 2 sec, accompanied by trichocyst exocytosis and a central Ca2+ spread during the subsequent ≥2 sec. Chelation of Ca2+ o considerably attenuated [Ca2+] i increase. Therefore, caffeine may primarily mobilize cortical Ca2+ pools, superimposed by Ca2+ influx and spillover (particularly in tl cells with empty trichocyst docking sites). In nd cells, caffeine caused trichocyst contents to decondense internally (Ca2+-dependent stretching, normally occurring only after membrane fusion). With 7S cells this usually occurred only to a small extent, but with increasing frequency as [Ca2+] i signals were reduced by [Ca2+] o chelation. In this case, quenched-flow and ultrathin section or freeze-fracture analysis revealed dispersal of membrane components (without fusion) subsequent to internal contents decondensation, opposite to normal membrane fusion when a full [Ca2+] i signal was generated by caffeine stimulation (with Ca2+ i and Ca2+ o available). We conclude the following. (i) Caffeine can mobilize Ca2+ from cortical stores independent of the presence of Ca2+ o . (ii) To yield adequate signals for normal exocytosis, Ca2+ release and Ca2+ influx both have to occur during caffeine stimulation. (iii) Insufficient [Ca2+] i increase entails caffeine-mediated access of Ca2+ to the secretory contents, thus causing their decondensation before membrane fusion can occur. (iv) Trichocyst decondensation in turn gives a signal for an unusual dissociation of docking/fusion components at the cell membrane. These observations imply different threshold [Ca2+] i -values for membrane fusion and contents discharge. Received: 23 May 1997/Revised: 18 August 1997  相似文献   

8.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

9.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

10.
Insulin release by pancreatic β-cells is regulated by diverse intracellular signals, including changes in Ca(2+) concentration resulting from Ca(2+) entry through voltage-gated (Ca(V)) channels. It has been reported that the Rab3 effector RIM1 acts as a functional link between neuronal Ca(V) channels and the machinery for exocytosis. Here, we investigated whether RIM1 regulates recombinant and native L-type Ca(V) channels (that play a key role in hormone secretion) and whether this regulation affects insulin release. Whole-cell patch clamp currents were recorded from HEK-293 and insulinoma RIN-m5F cells. RIM1 and Ca(V) channel expression was identified by RT-PCR and Western blot. RIM1-Ca(V) channel interaction was determined by co-immunoprecipitation. Knockdown of RIM1 and Ca(V) channel subunit expression were performed using small interference RNAs. Insulin release was assessed by ELISA. Co-expression of Ca(V)1.2 and Ca(V)1.3 L-type channels with RIM1 in HEK-293 cells revealed that RIM1 may not determine the availability of L-type Ca(V) channels but decreases the rate of inactivation of the whole cell currents. Co-immunoprecipitation experiments showed association of the Ca(V)β auxiliary subunit with RIM1. The lack of Ca(V)β expression suppressed channel regulation by RIM1. Similar to the heterologous system, an increase of current inactivation was observed upon knockdown of endogenous RIM1. Co-immunoprecipitation showed association of Ca(V)β and RIM1 in insulin-secreting RIN-m5F cells. Knockdown of RIM1 notably impaired high K(+)-stimulated insulin secretion in the RIN-m5F cells. These data unveil a novel functional coupling between RIM1 and the L-type Ca(V) channels via the Ca(V)β auxiliary subunit that contribute to determine insulin secretion.  相似文献   

11.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

12.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

13.
The polyamine secretagogue, aminoethyldextran (AED), causes a cortical [Ca2+] transient in Paramecium cells, as analyzed by fluorochrome imaging. Our most essential findings are: (i) Cortical Ca2+ signals also occur when AED is applied in presence of the fast Ca2+ chelator, BAPTA. (ii) Extracellular La3+ application causes within seconds a rapid, reversible fluorescence signal whose reversibility can be attributed to a physiological [Ca2+] i transient (while injected La3+ causes a sustained fluorescence signal). (iii) Simply increasing [Ca2+] o causes a similar rapid, short-lived [Ca2+] i transient. All these phenomena, (i–iii), are compatible with activation of an extracellular ``Ca2+/(polyvalent cation)-sensing receptor' known from some higher eukaryotic systems, where this sensor (responding to Ca2+, La3+ and some multiply charged cations) is linked to cortical calcium stores which, thus, are activated. In Paramecium, such subplasmalemmal stores (``alveolar sacs') are physically linked to the cell membrane and they can also be activated by the Ca2+ releasing agent, 4-chloro-m-cresol, just like in Sarcoplasmic Reticulum. Since this drug causes a cortical Ca2+ signal also in absence of Ca2+ o we largely exclude a ``Ca2+-induced Ca2+ release' (CICR) mechanism. Our finding of increased cortical Ca2+ signals after store depletion and re-addition of extracellular Ca2+ can be explained by a ``store-operated Ca2+ influx' (SOC), i.e., a Ca2+ influx superimposing store activation. AED stimulation in presence of Mn2+ o causes fluorescence quenching in Fura-2 loaded cells, indicating involvement of unspecific cation channels. Such channels, known to occur in Paramecium, share some general characteristics of SOC-type Ca2+ influx channels. In conclusion, we assume the following sequence of events during AED stimulated exocytosis: (i) activation of an extracellular Ca2+/polyamine-sensing receptor, (ii) release of Ca2+ from subplasmalemmal stores, (iii) and Ca2+ influx via unspecific cation channels. All three steps are required to produce a steep cortical [Ca2+] signal increase to a level required for full exocytosis activation. In addition, we show formation of [Ca2+] microdomains (≤0.5 μm, ≤33 msec) upon stimulation. Received: 30 August 1999/Revised: 1 December 1999  相似文献   

14.
The anti-arrhythmic effects of long-chain polyunsaturated fatty acids (PUFAs) may be related to their ability to alter calcium handling in cardiac myocytes. We investigated the effect of eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) on calcium sparks in rat cardiac myocytes and the effects of these PUFAs and the monounsaturated oleic acid on cardiac calcium release channels (RyRs). Visualization of subcellular calcium concentrations in single rat ventricular myocytes showed that intensity of calcium sparks was reduced in the presence of EPA and DHA (15 µM). It was also found that calcium sparks decayed more quickly in the presence of EPA but not DHA. Sarcoplasmic vesicles containing RyRs were prepared from sheep hearts and RyR activity was determined by either [3H]ryanodine binding or by single-channel recording. Bilayers were formed from phosphatidylethanolamine and phosphatidylcholine dissolved in either n-decane or n-tetradecane. EPA inhibited [3H]ryanodine binding to RyRs in SR vesicles with K I = 40 µM. Poly- and mono-unsaturated free fatty acids inhibited RyR activity in lipid bilayers. EPA (cytosolic or luminal) inhibited RyRs with K I =32 µM and Hill coefficient, n 1 = 3.8. Inhibition was independent of the n-alkane solvent and whether RyRs were activated by ATP or Ca2+. DHA and oleic acid also inhibited RyRs, suggesting that free fatty acids generally inhibit RyRs at micromolar concentrations.  相似文献   

15.
Zinc (Zn2+) has been recently recognized as a crucial element for male gamete function in many species although its detailed mechanism of action is poorly understood. In sea urchin spermatozoa, Zn2+ was reported as an essential trace ion for efficient sperm motility initiation and the acrosome reaction by modulating intracellular pH (pHi). In this study we found that submicromolar concentrations of free Zn2+ change membrane potential (Em) and increase the concentration of intracellular Ca2+ ([Ca2+]i) and cAMP in Lytechinus pictus sperm. Our results indicate that the Zn2+ response in sperm of this species mainly involves an Em hyperpolarization caused by K+ channel activation. The pharmacological profile of the Zn2+-induced hyperpolarization indicates that the cGMP-gated K+ selective channel (tetraKCNG/CNGK), which is crucial for speract signaling, is likely a main target for Zn2+. Considering that Zn2+ also induces [Ca2+]i fluctuations, our observations suggest that Zn2+ activates the signaling cascade of speract, except for an increase in cGMP, and facilitates sperm motility initiation upon spawning. These findings provide new insights about the role of Zn2+ in male gamete function.  相似文献   

16.
The effect of cAMP and PKC on zymogen granule exocytosis was investigated by simultaneously measuring cytosolic Ca2+ concentration ([Ca2+]c) and individual zymogen granule exocytosis in isolated mouse pancreatic acini. When acinar cells were stimulated with acetylcholine (ACh, 10 microM), exocytic events were detected through granule-attached apical membranes with [Ca2+]c rise. Application of secretin, forskolin (an adenylate cyclase activator), or PMA (a PKC activator) alone did not elicit any [Ca2+]c rise or zymogen granule exocytosis, but co-stimulation with ACh led to exocytosis in that the total number of secreted granules increased markedly without a significant difference in [Ca2+]c rises. When we evoked exocytosis by [Ca2+]c ramps, pretreatment with forskolin or PMA elicited exocytosis at lower [Ca2+]c levels. These results indicate that PKC or cAMP alone could not directly elicit zymogen granule exocytosis, but that they increase the total releasable pool by rendering zymogen granules more sensitive to Ca2+.  相似文献   

17.
The involvement of extracellular Ca2+ and Ca2+ influx across the plasma membrane in parathyroid hormone (PTH) secretion was investigated in vitro using a new preparation of bovine parathyroid cells. Incubation of these cells in the presence of 25 microM or 2.5 microM free ambient Ca2+ induced a maximal rate of PTH secretion. Low free Ca2+ secretion is not associated with changes in membrane permeability, requires metabolic energy, and is reversible. The Ca2+ channel blocker D600 had no effect on either 45Ca-influx or PTH secretion in these cells. These results, showing that extracellular Ca2+ and Ca2+ influx across the plasma membrane are not required for PTH secretion by parathyroid cells, emphasize the differences in the cellular mechanisms underlying the secretion of PTH vs that of other secretory cells.  相似文献   

18.
19.
Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca(2+) levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca(2+) signals evoked by PbTx-3 were inhibited by blocking either IP(3) receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP(3) mass levels, dependent on extra-cellular Na(+). A similar increase in IP(3) mass was induced by high K(+) depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP(3) mass induced by either PbTx-3 or K(+) was also detected in Ca(2+)-free medium. These results establish that the effect of the toxin on both intracellular Ca(2+) and IP(3) levels occurs via a membrane potential sensor instead of directly by Na(+) flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP(3)-dependent calcium signal involved in regulation of gene expression.  相似文献   

20.
The sensing of extracellular Ca2+ concentration ([Ca2+]o) and modulation of cellular processes associated with acute or sustained changes in [Ca2+]o are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca2+]o signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca2+]o activated PKC-α and PKC-ε in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca2+]o required influx of Ca2+through Ni2+-sensitive Ca2+channels and phosphatidylinositol-dependent phospholipase C-β activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-α or -ε with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca2+]o. Activation of ERK1/2 by high [Ca2+]o was not necessary for the [Ca2+]o-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca2+]o signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号