首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In order to understand the blood flow patterns and their regulation in the gills and pulmonary artery ofAmbystoma tigrinum, the vascular resistance and vasoactivity of the two major branchial perfusion pathways and a vascular plexus in the pulmonary artery were investigated using an isolated-tissue perfusion method. Acetylcholine and epinephrine were both pressor agents in all three vascular segments. Angiotensin II also constricted the branchial respiratory vasculature. Norephinephrine was primarily a vasodilator in the branchial respiratory vasculature, however, it had no effect on the shunt vessels of the gill or the pulmonary arterial plexus. Both gill circulations were insensitive to alterations in CO2 and pH. Anoxia produced a slight vasodilation of the branchial respiratory vessels but had no effect on the shunt vasculature. Mild hypoxia had no effect on either branchial circulations. The results suggest that: (1) blood flow through the respiratory section of the gill may vary between 8 and 47% of total gill flow, (2) the major perfusion pathway to the lung is probably from the efferent artery of the third gill through the ductus arteriosus and then into the pulmonary artery, (3) O2, CO2 and pH exert no local control of branchial perfusion, (4) both cholinergic and adrenergic regulation of branchial and proximal pulmonary arterial vascular resistance is possible, (5) a rise in circulating norepinephrine should increase blood flow to the respiratory section of the gill.Abbreviations AII angiotensin II - ACh acetylcholine - EPi epinephrine - NE norepinephrine  相似文献   

2.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

3.
The effects of serotonin on continuously recorded cardiac parameters (heart rate, cardiac output, cardiac stroke volume), ventral and dorsal aortic blood pressures, branchial and systemic vascular resistances were investigated in the European eel in vivo. Intravenous administration of serotonin (30 g · kg–1) caused a marked bradycardia (45%) and a simultaneous decrease in cardiac output (50%), ventral (35%) and dorsal (50%) aortic blood pressures. Branchial resistance was markedly increased (60%) and systemic resistance decreased (30%). Cardiac stroke volume remained unchanged. The effects of serotonin on cardiac mained unchanged. The effects of serotonin on cardiac parameters were suppressed either by methysergide or a bilateral section of the cardiac vagus. Bradycardia could then be regarded as the consequence of a vagal mechanism triggered by serotonin action on central methysergide-sensitive serotonergic receptors. No inotropic effect of serotonin was observed. This lack of myocardiac contractility modification is discussed. The serotonin-mediated branchial vasoconstriction was attenuated by vagotomy, whereas the residual increase in branchial resistance (40%) was suppressed by methysergide. The serotonin-mediated branchial vasoconstriction could be the consequence of both a passive mechanism (compliance) caused by the decrease in cardiac output and an active mechanism involving methysergide-sensitive serotonergic receptors of the branchial vasculature. A possible involvement of this vasomotor effect in gill oxygen uptake is discussed. The serotonin-induced systemic vasodilation was insensitive either to cardiac vagotomy or to 5-HT1/2, 5-HT3 and 5-HT4 receptor antagonists, suggesting the involvement of a local mechanism which remains to be assessed.Abbreviations CSV cardiac stroke volume - DAP dorsal aortic pressure - HR heart rate - QC cardiac output - VAP ventral aortic pressure - VR b branchial vascular resistance - VR s systemic vascular resistance - VR t total vascular resistance - 5-HT 5-Hydroxytryptamine serotonin - RBI Research Biochemical Incorporated, metoclopramide HCl  相似文献   

4.
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio–arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio–arterial pathway across the respiratory lamellae; an arterio–arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.  相似文献   

5.
Summary Using the isolated-perfused head preparation at a constant flow rate, hemodynamic effects of adrenaline were studied in trout gills. The calculation of the vascular spaces was performed with the isotopic pulse technique allowing measurement of the distribution space of the tracer.The results show that the branchial arterial circuit was cleared more quickly than the branchial venous and cephalic circuits. Adrenaline addition significantly increased the volume of the branchial arterial circuit at the expense of the venous circuit, illustrating the closing of arterio-venous sphincters under catecholamine control. The increase of the arterial volume could be explained by a vasodilation of the arterial circuit, rather than resulting from lamellar recruitment. Furthermore, the flow rate of the cephalic circuit represented 5% of the total branchial flow rate.Abbreviations dpm radioactive decay per minute - F flow rate - HSA human serum albumin - T 1/2 half-time clearance - V distribution space  相似文献   

6.
The presence of adrenergic innervation was investigated in four different vascular segments of the neotenic tiger salamander, Ambystoma tigrinum, by histofluorescent staining for catecholamines. The segments were the respiratory section of the gill, the branchial shunt vessels, a vascular plexus in the pulmonary artery, and the dorsal aorta. No adrenergic fibers were detected in the respiratory section of the gill or the pulmonary arterial plexus. In contrast, the branchial shunt vessels contained both adrenergic varicosities and catecholamine-containing cell bodies. These cells resemble Type I cells of the mammalian carotid body and amphibian carotid labyrinth. Adrenergic innervation of the dorsal aorta was sparse and restricted to the adventitia. The results suggest that adrenergic nerves may directly regulate blood flow in the gill, and thus gas exchange, by controlling vascular resistance of the branchial shunts. The contractile state of the dorsal aorta may also be under adrenergic control. In addition, it is suggested that the adrenergic cells of the branchial shunts may serve a receptor function in being sensitive to arterial blood gases.  相似文献   

7.
Summary The isolated head preparation of the toadfish,Opsanus beta, perfused at constant flow rate was used to investigate the branchial vasoactive responses of the fish to adrenergic and cholinergic agonists. The perfused head maintained a relatively consistent and near in vivo branchial vascular resistance for periods of at least 8 h.Adrenergic stimulation of the isolated head produced a vasodilatory response acting via alpha and beta adrenergic receptor sites. However, the alpha adrenoceptor-mediated (vasoconstrictory) response was not observed before the dominant beta adrenoceptor-mediated (vasodilatory) response.Carbachol caused an increase in perfusion pressure which was inhibited by atrophine; thus indicating that the carbachol effect was via muscarinic receptors. The vasoconstrictory response to carbachol, unlike that of acetylcholine persisted even after withdrawal of the drug apparently due to its strong binding to receptor sites and relatively low susceptibility to attack by acetylcholinesterase.Carbachol and adrenaline influenced each other's individual vasoactive effects thus indicating a possible interaction between sympathetic and parasympathetic neurotransmitters in the regulation of branchial vasomotor tone and, consequently, branchial vascular haemodynamics.  相似文献   

8.
Haemodynamic effects of adenosine on gills of the trout (Salmo gairdneri)   总被引:1,自引:0,他引:1  
Summary The haemodynamic effects of adenosine on gills of the trout (Salmo gairdneri) were studied with in vitro and in vivo preparations.On the isolated head preparation, adenosine induced a decrease of the ventral aortic inflow and of the dorsal aortic outflow. Simultaneously the venous outflow increased. These effects were antagonized by theophylline. Adenosine induced a vasoconstriction in gill arches without filaments perfused by the afferent or the efferent branchial arteries. The efferent vessels were more sensitive to adenosine than afferent vessels. The whole systemic circulation of the isolated trunk did not show any response to adenosine. When adenosine was infused into the ventral aorta of living trout, the gill resistance to blood flow was greatly increased.These results suggest that adenosine is able to control the arterious and venous blood pathways in the trout gills by modulating their vascular resistance.  相似文献   

9.
Summary Ventral (VAP) and dorsal (DAP) aortic blood pressure, heart rate (HR) and cardiac output ( ) were recorded simultaneously in unanaesthetized Atlantic cod, and the effects of vasoactive drugs on the cardio-vascular parameters studied. Mean resting values for the parameters were VAP=4,39 kPa, DAP=2,49 kPa, HR=41 beats/min, and = 29,1 ml/min×kg. Adrenaline constricted the systemic vasculature, dilated the branchial vasculature and caused a decrease of HR and due to a cholinergic reflex. After atropine pre-treatment this reflex was abolished, and the effect of adrenaline on blood pressure enhanced. A small decrease in persisted after atropine, presumably reflecting the effect of an increased end-systolic afterload.Phenylephrine produced a weak increase in systemic vascular resistance, while isoprenaline lowered both systemic and branchial vascular resistance. The effect of isoprenaline is probably mediated by beta adrenoceptors in both vascular beds, since propranolol antagonizes the effect.Acetylcholine in low doses produces a drop in without affecting HR, while higher doses also stop the heart. There is no significant change in either branchial and systemic vascular resistance after acetylcholine.Abbreviations VAP mean ventral aortic blood pressure - DAP mean dorsal aortic blood pressure - TBPD trans-branchial blood pressure drop - HR heart rate - SV stroke volume - cardiac output (ventral aortic blood flow) - VR g branchial vascular resistance - VR s systemic vascular resistance  相似文献   

10.
Information about the presence and effects of nitric oxide (NO) in fish vasculature is scant and contradictory. We have studied the NO/cGMP system in the branchial circulation of the teleost Anguilla anguilla using a branchial basket preparation under basal conditions and cholinergic stimulation. The effects of endogenous and exogenous NO were tested with L-arginine, the nitric oxide synthase (NOS) substrate, and the NO donors 3-morpholinosydnonimine (SIN-1) and sodium nitroprusside (SNP), respectively. L-arginine (from 10(-11) to 10(-6) M) and the NO donors (starting from 10(-14) M) caused dose-dependent vasoconstriction. Conversely, in the ACh-pre-contracted preparations both donors elicited vasodilation. SIN-1-induced vasoconstriction was due to NO generation: it was increased by superoxide dismutase (SOD) and blocked by NO scavenger hemoglobin. Pre-treatment with sGC inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of SIN-1 and SNP. The stable cGMP analogue 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br cGMP) induced dose-dependent vasoconstriction. Unexpectedly, three NOS inhibitors, N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), L-N(5)-(1-iminoethyl) ornithine (L-NIO), caused mild vasoconstriction. ACh caused vasoconstriction, but at pico- and nanomolar concentrations it caused mild but significant vasodilation in 40% of the preparations. Both responses, blocked by atropine and pirenzepine, required an intact endothelium. The ACh-induced vasoconstriction was substantially independent of a NO-cGMP mechanism.  相似文献   

11.
The general macrocirculation and branchial microcirculation of the air-breathing climbing perch, Anabas testudineus, was examined by light and scanning electron microscopy of vascular corrosion replicas. The ventral aorta arises from the heart as a short vessel that immediately bifurcates into a dorsal and a ventral branch. The ventral branch distributes blood to gill arches 1 and 2, the dorsal branch to arches 3 and 4. The vascular organization of arches 1 and 2 is similar to that described for aquatic breathing teleosts. The respiratory lamellae are well developed but lack a continuous inner marginal channel. The filaments contain an extensive nutritive and interlamellar network; the latter traverses the filament between, but in register with, the inner lamellar margins. Numerous small, tortuous vessels arise from the efferent filamental and branchial arteries and anastomose with each other to form the nutrient supply for the filament, adductor muscles, and arch supportive tissues. The efferent branchial arteries of arches 1 and 2 supply the accessory air-breathing organs. Arches 3 and 4 are modified to serve primarily as large-bore shunts between the dorsal branch of the ventral aorta and the dorsal aorta. In many filaments from arches 3 and 4, the respiratory lamellae are condensed and have only 1-3 large channels. In some instances in arch 4, shunt vessels arise from the afferent branchial artery and connect directly with the efferent filamental artery. The filamental nutrient and interlamellar systems are poorly developed or absent. The respiratory and systemic pathways in Anabas are arranged in parallel. Blood flows from the ventral branch of the ventral aorta, through gill arches 1 and 2, into the accessory respiratory organs, and then returns to the heart. Blood, after entering the dorsal branch of the ventral aorta, passes through gill arches 3 and 4 and proceeds to the systemic circulation. This arrangement optimizes oxygen delivery to the tissues and minimizes intravascular pressure in the branchial and air-breathing organs. The efficiency of this system is limited by the mixing of respiratory and systemic venous blood at the heart.  相似文献   

12.
Summary (1) Scanning electron microscopy and vascular casting were used to study the morphology and vascular anatomy of the fully developed internal gills of Litoria ewingii tadpoles. — (2) The four pairs of gills were located in two branchial baskets on either side of the heart. Each gill consisted of a branchial arch with gill tufts projecting ventrally and gill filters running dorsally. The gills bore a variable number of gill tufts in which a complex three-dimensional array of capillary loops, of varying lengths and diameters, was trailed in the path of the ventilatory current. — (3) The evidence presented in this paper suggests that the gill tufts have greater potential as gas exchangers than either the gill filters or skin. — (4) The study revealed structural and functional evidence for the existence of branchial shunts between afferent and efferent branchial arteries.  相似文献   

13.
Alteration of cochlear blood flow may be involved in the etiology of inner ear disorders like sudden hearing loss, fluctuating hearing loss and tinnitus. The aim of the present study was to localize the vasodilator calcitonin gene-related peptide (CGRP) and to identify CGRP receptors and their signaling pathways in the gerbil spiral modiolar artery (SMA) that provides the main blood supply of the cochlea. CGRP was localized in perivascular nerves by immunocytochemistry. The vascular diameter and cytosolic Ca2+ concentration [Ca2+]i in the smooth muscle cells were measured simultaneously with videomicroscopy and fluo-4-microfluorometry. Calcitonin receptor-like receptor (CRLR) mRNA was identified by RT-PCR as a specific 288 bp fragment in total RNA isolated from the vascular wall. The SMA was preconstricted by a 2-min application of 1 nM endothelin-1 (ET1). CGRP, forskolin, and dibutyryl-cAMP caused a vasodilation (EC50 = 0.1 nM, 0.3 mM, and 20 mM). CGRP and forskolin caused an increase in cAMP production and a transient decrease in the [Ca2+]i. The CGRP-induced vasodilation was antagonized by CGRP8-37 (KDB = 2 mM). The K+-channel blockers iberiotoxin and glibenclamide partially prevented the CGRP- or forskolin-induced vasodilations but failed to reverse these vasodilations. These results demonstrate that CGRP is present in perivascular nerves and causes a vasodilation of the ET1-preconstricted SMA. The data suggest that this vasodilation is mediated by an increase in the cytosolic cAMP concentration, a transient activation of iberiotoxin-sensitive BK and glibenclamide-sensitive KATP K+ channels, a transient decrease in the [Ca2+]i and a long-lasting Ca2+ desensitization.  相似文献   

14.
Hypoxia contracts mammalian respiratory vessels and increases vascular resistance in respiratory tissues of many vertebrates. In systemic vessels these responses vary, hypoxia relaxes mammalian vessels and contracts systemic arteries from cyclostomes. It has been proposed that hypoxic vasoconstriction in cyclostome systemic arteries is the antecedent to mammalian hypoxic pulmonary vasoconstriction, however, phylogenetic characterization of hypoxic responses is lacking. In this study, we characterized the hypoxic response of isolated systemic and respiratory vessels from a variety of vertebrates using standard myography. Pre-gill/respiratory (ventral aorta, afferent branchial artery, pulmonary artery) and post-gill/systemic (dorsal and thoracic aortas, efferent branchial artery) from lamprey (Petromyzon marinus), sandbar shark (Carcharhinus plumbeus), yellowfin tuna (Thunnus albacares), American bullfrog (Rana catesbeiana), American alligator (Alligator mississippiensis), Pekin duck (Anas platyrhynchos domesticus), chicken (Gallus domesticus) and rat (Rattus norvegicus) were exposed to hypoxia at rest or during pre-stimulation (elevated extracellular potassium, epinephrine or norepinephrine). Hypoxia produced a relaxation or transient contraction followed by relaxation in all pre-gill vessels, except for contraction in lamprey, and vasoconstriction or tri-phasic constriction-dilation-constriction in all pulmonary vessels. Hypoxia contracted systemic vessels from all animals except shark and rat and in pre-contracted rat aortas it produced a transient contraction followed by relaxation. These results show that while the classic "systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction" may occur in the microcirculation, the hypoxic response of the vertebrate macrocirculation is quite variable. These findings also suggest that hypoxic vasoconstriction is a phylogenetically ancient response.  相似文献   

15.
The purpose of the study was to determine the extent that peptidergic afferent and efferent pathways contribute to vagally induced vasodilation in the trachea of the dog. The change in vascular resistance of the tracheal branch of the cranial thyroid artery and the trachealis responses were determined in 28 anesthetized, paralyzed, and mechanically ventilated dogs. After propranolol (2 mg/kg) and phentolamine (1.5 mg/kg), stimulation of the superior laryngeal nerves (NS; 15 Hz, 7 V, 2 ms, 30 s) caused a decrease in vascular resistance of 11.7 +/- 0.8% and a tracheal contraction of 5.2 +/- 4.7 cmH2O. Atropine (1.5 mg/kg) reduced the fall in vascular resistance to 4.7 +/- 0.8% (P less than 0.01), whereas tracheal contraction was abolished. Thiorphan (1.5 mg), a neutral endopeptidase inhibitor, augmented the decrease in vascular resistance (8.8 +/- 0.6%; P less than 0.01) to NS. After hexamethonium (0.5 mg/kg), NS still caused a small decrease in TVR (2.9 +/- 0.9%; P less than 0.05), which was abolished by capsaicin. In atropinized dogs, capsaicin reduced the fall in vascular resistance after NS; the residual vasodilation was virtually abolished by hexamethonium. Acetylcholine (10(-3) mg/kg) decreased vascular resistance (15.7 +/- 3.0%), and the effect was abolished by atropine. We conclude that there is noncholinergic nonadrenergic vagally induced tracheal vasodilation that is peptidergic. The peptidergic vasodilation appears to be mediated by both afferent and efferent pathways.  相似文献   

16.
The anatomy of the respiratory system of the savanna-zone African freshwater crab, Sudanonautes (Convexonautes) aubryi monodi [Balss, 1929], has been examined and has been found to be adapted for both aerial and aquatic gas exchange. The activities of the scaphognathites and the directions of flow of the ventilatory stream have been recorded in stressed, active and resting specimens during their exposure to a wide range of conditions from deep water to dry land.Ventilation of the branchial chambers during aquatic gas exchange in Sudanonautes kept in deep water is shown to consist of a rapid, predominantly forward water flow similar to that of fully-aquatic species. Ventilation of the branchial chambers during aerial gas exchange in Sudanonautes on land is shown to consist of a relatively slow forward air flow. This flow is continuous in post-operative crabs, pulsatile in active crabs and completely immobile in resting crabs.A second method of ventilation of the branchial chambers during aerial gas exchange is shown to consist of a pulsatile reversed air flow. This occurs (1) when Sudanonautes is kept in very shallow water and active or stressed; (2) when it has recently moved on to land; and (3) when it is completely immersed and exhibiting aerial gas exchange under water. The unusual phenomenon of aerial gas exchange under water is reported here for the first time in any species of crab.Bimodal ventilation of the branchial chambers occurs in stressed or active crabs partly immersed in shallow water. This consists of an alternation between forward water flow and reversed air flow.The morphology of the branchial chambers in Sudanonautes, and observational data on the patterns of ventilation of the branchial chambers, are discussed in relation to those described for other air-breathing decapod crustaceans.  相似文献   

17.
The branchial vascular anatomy of Urolophus mucosus and U. paucimaculatus was studied by scanning electron microscopical examination of critical-point-dried tissue or of vascular corrosion casts. The vasculature could be divided into arterioarterial and arteriovenous pathways, which channel the flow of blood through the gills. The arterioarterial pathway consists of an afferent branchial artery which gives rise to afferent distributing arteries that run through the tissues of the interbranchial septum and supply the afferent filament arteries of several filaments. Afferent filament arteries open regularly into a corpus cavernosum in the core of the filament; unlike other elasmobranchs no septal corpora cavernosa are found. At the tip of the filament, channels of the corpus cavernosum connect to a channel which passes across the distal end of the filament from afferent to efferent side. This channel always connects to the afferent filament artery, and in many filaments it connects to the efferent filament artery as well. In addition, a vascular arcade connects all the afferent filament arteries along the entire length of each hemibranch. The filament corpus cavernosum supplies the secondary lamellae. The lamellae drain into efferent lamellar arterioles which in turn drain into the efferent filament artery and the efferent branchial artery. The vascular anatomy of the arteriovenous pathway is similar to that described in other elasmobranchs and consists of arteriovenous anastomoses, found only arising from efferent arterial circulation, and the venolymphatic system, which is composed of the central venous sinus and the companion vessels.  相似文献   

18.
The potent vasomodulator adenosine (AD), thanks to the interaction with by A(1) and A(2) receptors, dilates systemic, coronary and cerebral vasculatures but exert a constrictor action in several vessels of respiratory organs. Recent investigations suggest that nitric oxide (NO) contributes to AD effects. In fish, both NO and AD induce atypical effects compared to mammals. Since there is very little information on the role of NO and its involvement in mediating the actions of AD in fish, we have analysed this question in the branchial vasculature of the elasmobranch Squalus acanthias and the teleost Anguilla anguilla using an isolated perfused head and a branchial basket preparation, respectively. In both dogfish and eel, AD dose-response curves showed a biphasic effect: vasoconstriction (pico to nanomolar range) and vasodilation (micromolar range). Both effects were abolished by the classic xanthine inhibitor theophylline (Theo) and also by specific antagonists of A(1) and A(2) receptor subtypes. To analyse the involvement of the NO/cGMP system in the AD responses, we tested a NOS inhibitor, l-NIO, and a specific soluble guanylate cyclase (sGC) blocker, ODQ. In both dogfish and eel preparations l-NIO abrogated all vasomotor effects of AD, whereas ODQ blocked the AD-mediated vasoconstriction without affecting the vasorelaxant response. This indicates that only AD-induced vasoconstriction is mediated by a NO-cGMP-dependent mechanism. By using the NO donor SIN-1, we showed a dose-dependent vasoconstrictory effect which was completely blocked by ODQ. These results provide compelling evidence that the vasoactive role of AD in the branchial circulation of S. acanthias and A. anguilla involves a NO signalling.  相似文献   

19.
The presence of vasoactive intestinal polypeptide (VIP), substance P (SP), somatostatin, enkephalin, and avian pancreatic polypeptide (APP) in nerves in the female genital tract raises the question of their physiological significance as neurotransmitter substances. We have examined the effect of these peptides on non-vascular uterine smooth muscle in vivo as well as in vitro, and the effect on blood flow in the genital tract of rabbit and cat. SP caused a dose-dependent increase in mechanical and myoelectrical activity, an action which could be antagonized by VIP. Substance P, leu-enkephalin and VIP induced a concentration related increase in blood flow of the uterus, where VIP seems to be the most potent vasodilator. Neither the effects on vascular nor on non-vascular smooth muscle were inhibited by adrenergic nor cholinergic blocking agents. APP was able to inhibit the VIP-induced vasodilation in rabbits. These findings suggest that several peptides are involved in the local nervous control of both uterine contractions and haemodynamic events.  相似文献   

20.
Methyl methacrylate vascular corrosion replicas were used to examine the macrocirculation in the head region and the microcirculation of respiratory vessels in the air-breathing swamp eel Monopterus cuchia. Fixed respiratory tissue was also examined by SEM to verify capillary orientation. The respiratory and systemic circulations are only partially separated, presumably resulting in supply of mixed oxygenated and venous blood to the tissues. A long ventral aorta gives rise directly to the coronary and hypobranchial arteries. Two large shunt vessels connect the ventral aorta to the dorsal aorta, whereas the remaining ventral aortic flow goes to the respiratory islets and gills. Only two pairs of vestigial gill arches remain, equivalent to the second and third arches, yet five pairs of aortic arches were identified. Most aortic arches supply the respiratory islets. Respiratory islet capillaries are tightly coiled spirals with only a fraction of their total length in contact with the respiratory epithelium. Valve-like endothelial cells delimit the capillary spirals and are unlike endothelial cells in other vertebrates. The gills are highly modified in that the lamellae are reduced to a single-channel capillary with a characteristic three-dimensional zig-zag pathway. There are no arterio-arterial lamellar shunts, although the afferent branchial artery supplying the gill arches also supplies respiratory islets distally. A modified interlamellar filamental vasculature is present in gill tissue but absent or greatly reduced in the respiratory islets. The macro- and micro-circulatory systems of M. cuchia have been considerably modified presumably to accommodate aerial respiration. Some of these modifications involve retention of primitive vessel types, whereas others, especially in the microcirculation, incorporate new architectural designs some of whose functions are not readily apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号