首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A compact, three‐in‐one, flow‐through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm‐dominated anode consortium enriched under a multimode, continuous‐flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air‐breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50‐mM ferricyanide‐based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5–6 Ω, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area‐based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
An overflow-type wetted-wall MFC (WWMFC) was developed to generate a stable voltage from acetate-based substrates. The maximum power density of 18.21 W/m3 was obtained. The power generation showed a saturation-type relationship as a function of initial COD, with a maximum power density (Pmax) of 18.82 W/m3 and a saturation constant (Ks) of 227.4 mg/l. Forced air flowing through the cathode chamber had a negligible effect on power generation. Influent flow rate could greatly affect the power generation. The maximum power density was increased by 72.8% when the influent flow rate increased from 5 to 30 ml/min. In addition, increasing ionic strength did not affect the power density and internal resistance. Oxygen could be restrained to diffuse into the anode chamber effectively in the overflow-type WWMFC. And the overflow-type WWMFC could be scaled up conveniently in practical application.  相似文献   

3.
The purpose of this study was to determine the effect of enrichment procedure on the performance and microbial diversity of an air-cathode microbial fuel cell (MFC) which was explored for simultaneous azo dye decolorization and electricity generation. Two different enrichment procedures in which glucose and Congo red were added into the MFCs sequentially (EP1) or simultaneously (EP2) were tested by operating parallel MFCs independently for more than 6 months. The power density, electrode potential, Congo red decolorization, biofilm morphology, and bacterial diversity of the MFCs under the two enrichment procedures were compared and investigated. The results showed that the enrichment procedures have a negligible effect on the dye decolorization, but significantly affected the electricity generation. More than 90% decolorization at dye concentration of 300 mg/L was achieved within 170 h for the two tested enrichment procedures. However, the MFC with EP2 achieved a maximum power density of 192 mW/m2, which was 75% higher than that of the MFC with EP1 (110 mW/m2). The depressed surfaces of the bacteria in the MFC with EP1 indicated the allergic response caused by the subsequent addition of Congo red. 16S rRNA sequencing analysis demonstrated a phylogenetic diversity in the communities of the anode biofilm and showed clear differences between the anode-attached populations in the MFCs with a different enrichment procedure. This study suggests that the enrichment procedure is important for the MFC explored for simultaneous dye decolorization and electricity generation.  相似文献   

4.
Feng Y  Yang Q  Wang X  Liu Y  Lee H  Ren N 《Bioresource technology》2011,102(1):411-415
Biodiesel production through transesterification of lipids generates large quantity of biodiesel waste (BW) containing mainly glycerin. BW can be treated in various ways including distillation to produce glycerin, use as substrate for fermentative propanediol production and discharge as wastes. This study examined microbial fuel cells (MFCs) to treat BW with simultaneous electricity generation. The maximum power density using BW was 487 ± 28 mW/m2 cathode (1.5 A/m2 cathode) with 50 mM phosphate buffer solution (PBS) as the electrolyte, which was comparable with 533 ± 14 mW/m2 cathode obtained from MFCs fed with glycerin medium (COD 1400 mg/L). The power density increased from 778 ± 67 mW/m2 cathode using carbon cloth to 1310 ± 15 mW/m2 cathode using carbon brush as anode in 200 mM PBS electrolyte. The power density was further increased to 2110 ± 68 mW/m2 cathode using the heat-treated carbon brush anode. Coulombic efficiencies (CEs) increased from 8.8 ± 0.6% with carbon cloth anode to 10.4 ± 0.9% and 18.7 ± 0.9% with carbon brush anode and heat-treated carbon brush anode, respectively.  相似文献   

5.
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded.  相似文献   

6.
Single chambered mediatorless microbial fuel cell (MFC; non-catalyzed electrodes) was operated to evaluate the potential of bioelectricity generation from the treatment of composite waste vegetables (EWV) extract under anaerobic microenvironment using mixed consortia as anodic biocatalyst. The system was operated with designed synthetic wastewater (DSW; 0.98 kg COD/m3-day) during adaptation phase and later shifted to EWV and operated at three substrate load conditions (2.08, 1.39 and 0.70 kg COD/m3-day). Experimental data illustrated the feasibility of bioelectricity generation through the utilization of EWV as substrate in MFC. Higher power output (57.38 mW/m2) was observed especially at lower substrate load. The performance of MFC was characterized based on the polarization behavior, cell potentials, cyclic voltammetric analysis and sustainable resistance. MFC operation also documented to stabilize the waste by effective removal of COD (62.86%), carbohydrates (79.84%) and turbidity (55.12%).  相似文献   

7.
Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.  相似文献   

8.
Surface modifications of anode materials are important for enhancing power generation of microbial fuel cell (MFC). Membrane free single-chamber air-cathode MFCs, MFC-A and MFC-N, were constructed using activated carbon fiber felt (ACF) anodes treated by nitric acid and ethylenediamine (EDA), respectively. Experimental results showed that the start-up time to achieve the maximum voltages for the MFC-A and MFC-N was shortened by 45% and 51%, respectively as compared to that for MFC-AT equipped with an unmodified anode. Moreover, the power output of MFCs with modified anodes was significantly improved. In comparison with MFC-AT which had a maximum power density of 1304 mW/m2, the MFC-N achieved a maximum power density of 1641 mW/m2. The nitric acid-treated anode in MFC-A increased the power density by 58% reaching 2066 mW/m2. XPS analysis of the treated and untreated anode materials indicated that the power enhancement was attributable to the changes of surface functional groups.  相似文献   

9.
An up-flow anaerobic sludge blanket reactor–microbial fuel cell–biological aerated filter (UASB–MFC–BAF) system was developed for simultaneous bioelectricity generation and molasses wastewater treatment in this study. The maximum power density of 1410.2 mW/m2 was obtained with a current density of 4947.9 mA/m2 when the high strength molasses wastewater with chemical oxygen demand (COD) of 127,500 mg/l was employed as the influent. The total COD, sulfate and color removal efficiencies of the proposed system were achieved of 53.2%, 52.7% and 41.1%, respectively. Each unit of this system had respective function and performed well when integrated together. The UASB reactor unit was mainly responsible for COD removal and sulfate reduction, while the MFC unit was used for the oxidation of generated sulfide with electricity generation. The BAF unit dominated color removal and phenol derivatives degradation. This study is a beneficial attempt to combine MFC technology with conventional anaerobic–aerobic processes for actual wastewater treatment.  相似文献   

10.
Food wastes were used as feedstock for the direct production of electricity in a microbial fuel cell (MFC). MFC operations with volatile fatty acids (VFA) produced 533 mV with a maximum power density of 240 mW/m2. Short-chain VFAs, such as acetate, were degraded more rapidly and thus supported higher power generation than longer chain ones. In general, the co-existence of other, different VFAs slowed the removal of each VFA, which indicated that anodic microbes were competing for different substrates. 16S rRNA gene analysis using PCR-DGGE indicated that the MFC operation with VFAs had enriched unique microbial species.  相似文献   

11.
Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938 mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707 mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface.  相似文献   

12.
Scaling up microbial fuel cells (MFCs) requires the development of compact reactors with multiple electrodes. A scalable single chamber MFC (130 mL), with multiple graphite fiber brush anodes and a single air-cathode cathode chamber (27 m2/m3), was designed with a separator electrode assembly (SEA) to minimize electrode spacing. The maximum voltage produced in fed-batch operation was 0.65 V (1,000 Ω) with a textile separator, compared to only 0.18 V with a glass fiber separator due to short-circuiting by anode bristles through this separator with the cathode. The maximum power density was 975 mW/m2, with an overall chemical oxygen demand (COD) removal of >90% and a maximum coulombic efficiency (CE) of 53% (50 Ω resistor). When the reactor was switched to continuous flow operation at a hydraulic retention time (HRT) of 8 h, the cell voltage was 0.21 ± 0.04 V, with a very high CE = 85%. Voltage was reduced to 0.13 ± 0.03 V at a longer HRT = 16 h due to a lower average COD concentration, and the CE (80%) decreased slightly with increased oxygen intrusion into the reactor per amount of COD removed. Total internal resistance was 33 Ω, with a solution resistance of 2 Ω. These results show that the SEA type MFC can produce stable power and a high CE, making it useful for future continuous flow treatment using actual wastewaters.  相似文献   

13.
The performance of the cathodic electron acceptors (CEA) used in the two-chambered microbial fuel cell (MFC) was in the following order: potassium permanganate (1.11 V; 116.2 mW/m2) > potassium persulfate (1.10 V; 101.7 mW/m2) > potassium dichromate, K2Cr2O7 (0.76 V; 45.9 mW/m2) > potassium ferricyanide (0.78 V; 40.6 mW/m2). Different operational parameters were considered to find out the performance of the MFC like initial pH in aqueous solutions, concentrations of the electron acceptors, phosphate buffer and aeration. Potassium persulfate was found to be more suitable out of the four electron acceptors which had a higher open circuit potential (OCP) but sustained the voltage for a much longer period than permanganate. Chemical oxygen demand (COD) reduction of 59% was achieved using 10 mM persulfate in a batch process. RALEX™ AEM-PES, an anion exchange membrane (AEM), performed better in terms of power density and OCP in comparison to Nafion®117 Cation Exchange Membrane (CEM).  相似文献   

14.
Simultaneous carbon and nitrogen removal using loop configuration microbial fuel cell (MFC) with relatively large size of 5 L was investigated in this study. Four MFC reactors were constructed with a loop configuration to eliminate the pH gradient, and the reactor performance was examined with different separators and cathode materials. The performance of the reactors in terms of electricity generation and contaminant removal rate was examined. Results showed that a maximum power density of 1415.6 mW/m3 (The empty bed volume of anode chamber) was obtained at a current density of 3258.5 mA/m3 with cation exchange membrane as separator and graphite felt (Pt coated) as cathode using the piggery wastewater as feed, and the organic removal rate obtained was approximately 0.523 kg COD/m3/d (total anode chamber) with nitrogen removal rate of 0.194 kg N/m3/d (total cathode chamber).  相似文献   

15.
Development of a solar-powered microbial fuel cell   总被引:1,自引:0,他引:1  
Aims: To understand factors that impact solar‐powered electricity generation by Rhodobacter sphaeroides in a single‐chamber microbial fuel cell (MFC). Methods and Results: The MFC used submerged platinum‐coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate‐enhancing power production over ammonium. Conclusions: Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m?2 (2·9 W m?3). In the dark, power output was less than 0·5 mW m?2 (0·008 W m?3). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. Significance and Impact of the Study: We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one‐chamber solar‐driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two‐chamber systems using photosynthetic bacteria.  相似文献   

16.
A microbial fuel cell (MFC) is a relatively new type of fixed film bioreactor for wastewater treatment, and the most effective methods for inoculation are not well understood. Various techniques to enrich electrochemically active bacteria on an electrode were therefore studied using anaerobic sewage sludge in a two-chambered MFC. With a porous carbon paper anode electrode, 8 mW/m2 of power was generated within 50 h with a Coulombic efficiency (CE) of 40%. When an iron oxide-coated electrode was used, the power and the CE reached 30 mW/m2 and 80%, respectively. A methanogen inhibitor (2-bromoethanesulfonate) increased the CE to 70%. Bacteria in sludge were enriched by serial transfer using a ferric iron medium, but when this enrichment was used in a MFC the power was lower (2 mW/m2) than that obtained with the original inoculum. By applying biofilm scraped from the anode of a working MFC to a new anode electrode, the maximum power was increased to 40 mW/m2. When a second anode was introduced into an operating MFC the acclimation time was not reduced and the total power did not increase. These results suggest that these active inoculating techniques could increase the effectiveness of enrichment, and that start up is most successful when the biofilm is harvested from the anode of an existing MFC and applied to the new anode.  相似文献   

17.
Effective wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational parameters and solution chemistry affect treatment efficiency, but few studies have examined power generation using actual wastewaters. The efficiency of wastewater treatment of a beer brewery wastewater was examined here in terms of maximum power densities, Coulombic efficiencies (CEs), and chemical oxygen demand (COD) removal as a function of temperature and wastewater strength. Decreasing the temperature from 30°C to 20°C reduced the maximum power density from 205 mW/m2 (5.1 W/m3, 0.76 A/m2; 30°C) to 170 mW/m2 (20°C). COD removals (R COD) and CEs decreased only slightly with temperature. The buffering capacity strongly affected reactor performance. The addition of a 50-mM phosphate buffer increased power output by 136% to 438 mW/m2, and 200 mM buffer increased power by 158% to 528 mW/m2. In the absence of salts (NaCl), maximum power output varied linearly with wastewater strength (84 to 2,240 mg COD/L) from 29 to 205 mW/m2. When NaCl was added to increase conductivity, power output followed a Monod-like relationship with wastewater strength. The maximum power (P max) increased in proportion to the solution conductivity, but the half-saturation constant was relatively unaffected and showed no correlation to solution conductivity. These results show that brewery wastewater can be effectively treated using MFCs, but that achievable power densities will depend on wastewater strength, solution conductivity, and buffering capacity.  相似文献   

18.
A microbial fuel cell (MFC) was conceived to low electric power production in parallel to valorization of industrial wastes and environment preservation. It consisted of two compartments separated by polymer Nafion membrane, platinum grid as cathode catalyst and graphite rod inoculated with fruit leachate as bio-anode. Owing to its bio-compatibity with bacterial inoculum and chemical stability, Graphite Carbon (GC) was tested as carrier of biofilm using fruit waste inoculum. The maximum power density harvested with this electrode was about 20 mW.m?2 much greater than that obtained previously with a garden compost inoculum (i.e. 7 mW.m?2). The difference between the two values may be attributed to the bacterial nature of inoculum utilized. Impressively, upon the addition of 6 mL of fuel (sucrose), the soft porous graphite felt GF yielded voltage (260 mV) which was significantly higher than that of the hard smooth solid GC (i.e. 140 mV). This result makes in evidence the effect of adsorption of the electro-active biofilm onto the surface of the electrode. We ascribe therefore the enhanced power density to a more uniform spread out of the electro-active biofilm within the GF matrix, as verified by higher conductivity obtained with four probe method. The results reported herein highlight the importance of assessing the bio-catalytic activity towards the oxidation of the organic substrate to yield renewable low energy. The experimental data and the differences between the bio-anodes GC and GF were discussed in term of electrochemical techniques such as cyclic voltammetry, impedance spectroscopy and four-probe conductivity. Whatever the nature of the bio-anodes, the overall bacterial colonization still yields low values of clean electric energy compared to highly polluted energy obtained with an alkaline fuel cell.  相似文献   

19.

Objectives

To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass.

Results

Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m?2, 33 mW m?2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m?2, 78 mW m?2 and 6% respectively.

Conclusions

Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.
  相似文献   

20.
Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around ?0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of ?0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m2, whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m2. In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were ?31 mA and ?850 µA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号