首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Chondroitin sulphate–serum protein complexes (A, B and C), successively precipitated by adding chondroitin sulphate to serum at three arbitrary descending pH values (5·2, 4·3 and 3·1), were dissociated at pH 6·7 and chromatographed on DEAE-Sephadex, when the liberated serum proteins were simultaneously freed of chondroitin sulphate and separated into five fractions. Evidence that serum proteins were precipitated as a result of electrostatic interactions with dissociated carboxylate groups on the glycosaminoglycan is presented. 2. Serum proteins (fraction G), unable to form complexes with chondroitin sulphate, contained 4·4% of sialic acid and accounted for 4 and 26% of the total protein and protein-bound sialic acid in serum respectively. This fraction interacted electrostatically with chondroitin sulphate only when rendered more basic by removal of sialic acid residues with neuraminidase. The heat stability, solubility properties and high carbohydrate content of fraction G classified it as a seromucoid fraction. 3. Fraction G contained several glycoprotein and hexuronic acid-containing fractions, including a hitherto undetected brown-pigmented high-molecular-weight serum component, which migrated in starch gel between the origin and Sα2-globulin and contained 3·1 and 4·1% of sialic acid and hexuronic acid respectively. 4. Glycosaminoglycan–protein interactions are discussed in relation to protein fractionation. By prior removal of less acidic proteins by these interactions, a new technique is available for isolating serum seromucoids in higher yields and under milder conditions than existing methods.  相似文献   

2.
A difficult problem concerning the interaction of DNA with amphiphiles of opposite charge above their critical micelle concentration is the propensity for aggregation of the condensed DNA complexes. In this study, this problem was addressed by attenuating amphiphile charge density within a cholate micelle environment. The amphiphile consisted of a cationic peptide, acetyl-CWKKKPKK-amide, conjugated to dilaurylphosphatidylethanolamine. In the presence of cholate, multiple equivalents of cationic charge were required to bring about the completion of DNA condensation. At the end point of condensation, stable, soluble DNA–micelle complexes were formed, which by dynamic light scattering exhibited apparent hydrodynamic diameters between 30 and 60 nm. Aggregation, as measured by static light scattering at 90° and by turbidity, was not observed until further additions of peptide–lipid conjugate were made beyond the end point of DNA condensation. Liposome complexes containing the non-aggregated, compacted DNA were formed by adding dioleoylphosphatidylcholine followed by removing the cholate by dialysis. The resulting complexes were distributed within a narrow density range, the DNA was quantitatively assembled into the liposomes, and liposomes without DNA were not detected. Small particles were formed with a mean hydrodynamic diameter of 77 nm. The liposomal DNA showed complete retention of its supercoiled form and no detectable sensitivity to DNase (25 U/10 µg DNA, 1.5 h, 37°C). The use of an anionic, dialyzable amphiphile to attenuate charge interactions between DNA and cationic amphiphiles is a useful technology for the quantitative assembly of compacted DNA into conventional liposomes, with complete protection against nuclease activity.  相似文献   

3.
1. Although glycoproteins with less than 1% of sialic acid (fibrinogen, lipoproteins, gamma-globulins) interact electrostatically with chondromucoprotein to form insoluble complexes, interaction with glycoproteins containing larger amounts of sialic acid (orosomucoid, urine glycoprotein, seromucoid, fraction VI) was electrostatically impossible. Reasons for this are discussed. 2. The latter glycoproteins interacted with chondromucoprotein after mild acid hydrolysis or neuraminidase treatment, complex-formation being inversely related to their sialic acid content. 3. Complex-formation with sialic acid-deficient orosomucoid was maximum at pH3.6 and negligible above its isoelectric point of pH5, and was inhibited by Ca(2+) ions and EDTA. 4. These results are discussed in relation to the carbohydrate composition and biological activities of euglobulin fractions, and of complexes formed by adding chondromucoprotein to abnormal plasmas which may contain sialic acid-deficient glycoproteins owing to faulty carbohydrate metabolism.  相似文献   

4.
1. Interactions of proteins with neutral polysaccharides and such polyacids as polygalacturonic acid, chondroitin sulphate, RNA and DNA in a two-phase system composed of phenol and aqueous buffers in the pH range 1·5–10 were studied. 2. Analysis of the products of the interaction was facilitated by the absolute preference of the proteins studied for the phenol-rich phase at all pH values. 3. The polyacids, on the other hand, in the absence of interactions were recovered mainly from the aqueous phases. 4. The interaction, the extent of which was mainly determined by the pH-dependent ionization state of the reacting partners, followed the patterns of antigen–antibody interactions with a well-defined equivalence point (maximum point of precipitation) and with the formation of soluble complexes. 5. The soluble complexes formed below the equivalence point were composed of proteins with small amounts of polyacids attached, and so passed into the phenol-rich phase; those formed above the maximum precipitation point were polyacidic in character and found in the aqueous phases. 6. Glycoproteins, with small amounts of covalently linked sugar residues, passed quantitatively into the phenol-rich phases. 7. The possibilities of developing a method for the analysis of glycoproteins and other applications are discussed.  相似文献   

5.
Electrometric and spectrophotometric titrations showed vancomycin to contain groups having pK values of about 2.9, 7.2, 8.6, 9.6, 10.5 and 11.7. Of these the four last-named were phenolic. Titration above pH11 and below pH1 was irreversible and antibiotic potency was destroyed. Combination with the specific peptide diacetyl-l-lysyl-d-alanyl-d-alanine hindered the titration of the first three phenolic groups. Spectrophotometric titration of iodovancomycin showed that the phenolic group with pK 9.6 was the one iodinated. The stability of the vancomycin–peptide complex in the range pH1–13 showed that complex-formation occurred only when carboxyl groups were ionized and the phenolic groups were non-ionized. The complex was formed in concentrations of urea up to 8m, of potassium chloride up to 4m, of sodium dodecyl sulphate up to 1%, and at temperatures up to 60°C. From titration curves, organic chlorine and iodine analysis, and combination with peptide, a minimum molecular weight for vancomycin of 1700–1800 was estimated. Optical-rotatory-dispersion and circular-dichroism experiments suggested that vancomycin has only limited conformational flexibility. Both vancomycin and its complexes with peptide exhibited properties suggesting aggregation. Vancomycin and iodovancomycin can be fractionated into a main fraction and at least three minor components. The isolation of these fractions salt-free is described and their antibiotic properties are shown to correlate with their ability to form complexes with peptide.  相似文献   

6.
1. [4-14C]Oestradiol was administered to seven male, seven female and two castrated male cats as a single intravenous injection. Bile and urine were collected for 6h. 2. The radioactivity was excreted mainly in the bile of all animals (53–60%); only approx. 1% of the dose appeared in the urine. 3. Bile and urine samples were hydrolysed successively by β-glucuronidase, cold acid and hot acid. There were significant differences (P<0.005) between the percentage of the dose present in the bile fractions hydrolysed by β-glucuronidase (male, 9.0±1.7%; female, 18.6±1.45%) and by cold acid (male, 18.9±1.44%; female 12.1±1.02%). The excretion of radioactivity in these fractions by the castrated male cats was closer to that of female cats. 4. Approx. 20–27% of the dose could not be extracted from aqueous solution (pH10.5) by ethyl acetate–ether after hydrolysis.  相似文献   

7.
1. The tributyrinases in milk are mainly associated with casein micelles. Dilution or addition of sodium chloride increases the enzyme activity, probably by dissociating the micelle–tributyrinase complexes. 2. Tributyrinase activities of milks activated by dilution and sodium chloride addition were in the range 0·2–1·7μequiv. of acid liberated/ml. of milk/min. from tributyrin emulsion at pH8·5 and 25°. The enzymes have a bivalent-cation requirement for full activity and are rather unstable when separated from casein. 3. Ultracentrifugation of skim milks containing sodium chloride (0·75m) gave preparations low in casein but containing about 70% of the milk tributyrinases. The tributyrinases in such preparations appear to be bound in complexes of molecular weight about 350000. Dilution may result in dissociation to give the free enzymes. 4. Pancreatic lipase also formed complexes with casein micelles, but wheat-germ esterase, xanthine oxidase, milk alkaline phosphatase and other enzymes did not.  相似文献   

8.

Background

Little is known about genetic basis and proteomics in valvular heart disease (VHD) including rheumatic (RVD) and degenerative (DVD) valvular disease. The present proteomic study examined the hypothesis that certain proteins may be associated with the pathological changes in the plasma of VHD patients.

Methods and Results

Differential protein analysis in the plasma identified 18 differentially expressed protein spots and 14 corresponding proteins or polypeptides by two-dimensional electrophoresis and mass spectrometry in 120 subjects. Two up-regulated (complement C4A and carbonic anhydrase 1) and three down-regulated proteins (serotransferrin, alpha-1-antichymotrypsin, and vitronectin) were validated by ELISA in enlarging samples. The plasma levels (n = 40 for each) of complement C4A in RVD (715.8±35.6 vs. 594.7±28.2 ng/ml, P = 0.009) and carbonic anhydrase 1 (237.70±15.7 vs. 184.7±10.8 U/L, P = 0.007) in DVD patients were significantly higher and that of serotransferrin (2.36±0.20 vs. 2.93±0.16 mg/ml, P = 0.025) and alpha-1-antichymotrypsin (370.0±13.7 vs. 413.0±11.6 µg/ml, P = 0.019) in RVD patients were significantly lower than those in controls. The plasma vitronectin level in both RVD (281.3±11.0 vs. 323.2±10.0 µg/ml, P = 0.006) and DVD (283.6±11.4 vs. 323.2±10.0 µg/ml, P = 0.011) was significantly lower than those in normal controls.

Conclusions

We have for the first time identified alterations of 14 differential proteins or polypeptides in the plasma of patients with various VHD. The elevation of plasma complement C4A in RVD and carbonic anhydrase 1 in DVD and the decrease of serotransferrin and alpha-1-antichymotrypsin in RVD patients may be useful biomarkers for these valvular diseases. The decreased plasma level of vitronectin – a protein related to the formation of valvular structure – in both RVD and DVD patients might indicate the possible genetic deficiency in these patients.  相似文献   

9.
Determination of the solution structure of the duplex d(GCAAGTC(HE)AAAACG)·d(CGTTTTAGACTTGC) containing a 3-(2-hydroxyethyl)-2′-deoxyuridine·deoxyadenine (HE·A) base pair is reported. The three-dimensional solution structure, determined starting from 512 models via restrained molecular mechanics using inter-proton distances and torsion angles, converged to two final families of structures. For both families the HE and the opposite A residues are intrahelical and in the anti conformation. The hydroxyethyl chain lies close to the helix axis and for one family the hydroxyl group is above the HE·A plane and in the other case it is below. These two models were used to start molecular dynamic calculations with explicit solvent to explore the hydrogen bonding possibilities of the HE·A base pair. The dynamics calculations converge finally to one model structure in which two hydrogen bonds are formed. The first is formed all the time and is between HEO4 and the amino group of A, and the second, an intermittent one, is between the hydroxyl group and the N1 of A. When this second hydrogen bond is not formed a weak interaction CH···N is possible between HEC7H2 and N1A21. All the best structures show an increase in the C1′–C1′ distance relative to a Watson–Crick base pair.  相似文献   

10.
Despite considerable interest and investigations on cationic lipid–DNA complexes, reports on lipid–RNA interaction are very limited. In contrast to lipid–DNA complexes where lipid binding induces partial B to A and B to C conformational changes, lipid–tRNA complexation preserves tRNA folded state. This study is the first attempt to investigate the binding of cationic lipid with transfer RNA and the effect of lipid complexation on tRNA aggregation and condensation. We examine the interaction of tRNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant tRNA concentration and various lipid contents. FTIR, UV-visible, CD spectroscopic methods and atomic force microscopy (AFM) were used to analyze lipid binding site, the binding constant and the effects of lipid interaction on tRNA stability, conformation and condensation. Structural analysis showed lipid–tRNA interactions with G–C and A–U base pairs as well as the backbone phosphate group with overall binding constants of KChol = 5.94 (± 0.8) × 104 M–1, KDDAB = 8.33 (± 0.90) × 105 M–1, KDOTAP = 1.05 (± 0.30) × 105 M–1 and KDOPE = 2.75 (± 0.50) × 104 M–1. The order of stability of lipid–tRNA complexation is DDAB > DOTAP > Chol > DOPE. Hydrophobic interactions between lipid aliphatic tails and tRNA were observed. RNA remains in A-family structure, while biopolymer aggregation and condensation occurred at high lipid concentrations.  相似文献   

11.
Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1–3 (BH1–3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.  相似文献   

12.
The astrocyte water channel aquaporin-4 (AQP4) is expressed as heterotetramers of M1 and M23 isoforms in which the presence of M23–AQP4 promotes formation of large macromolecular aggregates termed orthogonal arrays. Here, we demonstrate that the AQP4 aggregation state determines its subcellular localization and cellular functions. Individually expressed M1–AQP4 was freely mobile in the plasma membrane and could diffuse into rapidly extending lamellipodial regions to support cell migration. In contrast, M23–AQP4 formed large arrays that did not diffuse rapidly enough to enter lamellipodia and instead stably bound adhesion complexes and polarized to astrocyte end-feet in vivo. Co-expressed M1– and M23–AQP4 formed aggregates of variable size that segregated due to diffusional sieving of small, mobile M1–AQP4-enriched arrays into lamellipodia and preferential interaction of large, M23–AQP4-enriched arrays with the extracellular matrix. Our results therefore demonstrate an aggregation state–dependent mechanism for segregation of plasma membrane protein complexes that confers specific functional roles to M1– and M23–AQP4.  相似文献   

13.
14.
G protein–coupled receptors (GPCRs) convert external stimuli into cellular signals through heterotrimeric guanine nucleotide-binding proteins (G-proteins) and β-arrestins (βarrs). In a βarr-dependent signaling pathway, βarrs link GPCRs to various downstream signaling partners, such as the Raf–mitogen-activated protein kinase extracellular signal–regulated kinase–extracellular signal-regulated kinase cascade. Agonist-stimulated GPCR–βarr complexes have been shown to interact with C-Raf and are thought to initiate the mitogen-activated protein kinase pathway through simple tethering of these signaling partners. However, recent evidence shows that in addition to canonical scaffolding functions, βarrs can allosterically activate downstream targets, such as the nonreceptor tyrosine kinase Src. Here, we demonstrate the direct allosteric activation of C-Raf by GPCR–βarr1 complexes in vitro. Furthermore, we show that βarr1 in complex with a synthetic phosphopeptide mimicking the human V2 vasopressin receptor tail that binds and functionally activates βarrs also allosterically activates C-Raf. We reveal that the interaction between the phosphorylated GPCR C terminus and βarr1 is necessary and sufficient for C-Raf activation. Interestingly, the interaction between βarr1 and C-Raf was considerably reduced in the presence of excess activated H-Ras, a small GTPase known to activate C-Raf, suggesting that H-Ras and βarr1 bind to the same region on C-Raf. Furthermore, we found that βarr1 interacts with the Ras-binding domain of C-Raf. Taken together, these data suggest that in addition to canonical scaffolding functions, GPCR–βarr complexes directly allosterically activate C-Raf by binding to its amino terminus. This work provides novel insights into how βarrs regulate effector molecules to activate downstream signaling pathways.  相似文献   

15.
We have studied the formation of covalent complexes between 125I-urokinase (125I-UK) and proteins in human plasma. Although 125I-UK reacts with many proteinase inhibitors in purified systems, the predominant complexes formed in plasma are with antithrombin III (ATIII) and alpha 2-macroglobulin (alpha 2M). 125I-UK interacts with purified alpha 2M or alpha 2M in plasma to form a characteristic pattern of multiple complexes whose Mr values by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis are in the range of 380 000-720 000, under non-reducing conditions, and 180 000-430 000 after reduction. We also examined the inhibition of UK amidolytic activity by plasma and by purified ATIII. In the presence of saturating concentrations of ATIII and heparin, an apparent first-order rate constant of 6.8 X 10(-1) s-1 was calculated for the inhibition of urokinase. In contrast, the rate constant for the formation of covalent ATIII-UK complexes was lower, suggesting the inhibition of UK proceeds first via the formation of transient non-covalent intermediates that are then transformed more slowly into covalent end products. The observed rate constants for enzyme inhibition or complex-formation with plasma or purified inhibitors are insufficient to account for the reported clearance rate of injected UK in vivo.  相似文献   

16.
Fluorescent antibody fragments of anti-muscle plasma membrane antibody bound as small fluorescent spots when applied by micropipetting to cultured myotubes. The spots were observed to enlarge with time. The rate of enlargement of fluorescent spots was greater when fragments were applied than when divalent antibody was used. It was also greater at 23°–25°C than at 0°–4°C. With glutaraldehyde-fixed cells no increase in the size of the spots was seen. The observations are consistent with the spread of fluorescent spots due to diffusion of surface protein antigens within the plane of a fluid membrane. From measurements of spot size against time, a diffusion constant of 1–3 x 10-9 cm2 s-1 can be calculated for muscle plasma membrane proteins of mol wt approximately 200,000. This value is consistent with other observations on the diffusion of surface antigens and of labeled lipid molecules in synthetic and natural membranes.  相似文献   

17.
1. An enzyme system present in a rat liver lysosome-rich fraction was found to liberate soluble hydroxyproline-containing products from insoluble collagen, with maximum activity at pH3·45. It was concluded that a form of cathepsin D was involved since synthetic substrates specific for trypsin were not hydrolysed. Collagenolysis was enhanced by thiol compounds and inhibited by Cu2+ ions and the anti-inflammatory drugs phenylbutazone and ibufenac. 2. The possibility that behaviour of collagen and collagenolysis were modified by various substances, either by destruction of intramolecular and intermolecular bonds in tropocollagen or by electrostatic interactions, is discussed. Insoluble collagen was found to bind electrostatically to chondromucoprotein. This interaction was inhibited by some anti-inflammatory drugs. 3. Possible roles of the lysosomal collagenolytic enzyme system in experimental lathyrism in rats given penicillamine, and in erosion of cartilage in rheumatoid arthritis, are considered. 4. Collagenolysis in vivo, which may depend on complex interrelationships between collagen, chondromucoprotein and metal ions, is discussed in relation to possible effects, both harmful and beneficial, of anti-inflammatory drugs used in rheumatoid arthritis.  相似文献   

18.
Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content.  相似文献   

19.
Zinc pyrithione (1a), together with its analogues 1b–h and ruthenium pyrithione complex 2a, were synthesised and evaluated for the stability in biologically relevant media and anti-SARS-CoV-2 activity. Zinc pyrithione revealed potent in vitro inhibition of cathepsin L (IC50=1.88 ± 0.49 µM) and PLPro (IC50=0.50 ± 0.07 µM), enzymes involved in SARS-CoV-2 entry and replication, respectively, as well as antiviral entry and replication properties in an ex vivo system derived from primary human lung tissue. Zinc complexes 1b–h expressed comparable in vitro inhibition. On the contrary, ruthenium complex 2a and the ligand pyrithione a itself expressed poor inhibition in mentioned assays, indicating the importance of the selection of metal core and structure of metal complex for antiviral activity. Safe, effective, and preferably oral at-home therapeutics for COVID-19 are needed and as such zinc pyrithione, which is also commercially available, could be considered as a potential therapeutic agent against SARS-CoV-2.  相似文献   

20.
1. The metabolism of fluoride in seedlings and small plants of Acacia georginae has been studied with the idea of finding the conditions under which the plant makes fluoroacetate in the laboratory. 2. Individual seedlings vary in the extent to which they take up fluoride and convert it into a form other than inorganic which is here called `organic' fluoride, F(org.). The differences between the toxicity of A. georginae Gidyea trees may therefore be genetic in origin. 3. The uptake of fluoride from solutions 0·525–1·05mm (10–20p.p.m.) was not large. In 1–4 days it reached 8 p.p.m. in the aerial parts and 16 p.p.m. in the roots. Unlike the distribution of the halogen in grass, total fluoride was greater than inorganic fluoride. It was almost a rule that more `organic' fluoride was present in the roots than in the aerial parts. 4. With higher concentrations of fluoride 10·5–15·75mm (200–300p.p.m.) much larger amounts of fluoride were taken up, especially by the roots, and much more apparent organic fluoride was formed. 5. pH had a large influence upon the intake, this being lowest at an initial pH8·4 and highest at pH4·0. The pH outside this range was not investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号