首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems   总被引:6,自引:1,他引:5  
The effects of cultivation and soil texture on net and gross N mineralization, CO2 evolution and C and N turnover were investigated using paired grassland and cropped sites on soils of three textures. Gross N mineralization and immobilization were measured using15N-isotope dilution. Grassland soils had high CO2 evolution and gross N mineralization rates, and low net N mineralization rates. Cropland soils had low CO2 evolution rates but had high net and gross N mineralization rates. Grassland soils thus had high immobilization rates and cropland soils had low immobilization rates. Cultivation increased N turnover but reduced C turnover. The data suggest that the microflora in grassland soils are N limited, while those of cropland soils are limited by C availability. Increasing clay content reduced N turnover. C turnover was less clearly related to texture. Differences in the immobilization potential of substrates help explain why agricultural soils have higher N losses than do grassland soils.  相似文献   

2.
森林土壤融化期异养呼吸和微生物碳变化特征   总被引:1,自引:0,他引:1  
采用室内土柱培养的方法,研究在不同湿度(55%和80%WFPS,土壤充水孔隙度)和不同氮素供给(NH_4Cl和KNO_3,4.5 g N/m~2)条件下,外源碳添加(葡萄糖,6.4 g C/m~2)对温带成熟阔叶红松混交林和次生白桦林土壤融化过程微生物呼吸和微生物碳的激发效应。结果表明:在整个融化培养期间,次生白桦林土壤对照CO_2累积排放量显著高于阔叶红松混交林土壤。随着土壤湿度的增加,次生白桦林土壤对照CO_2累积排放量和微生物代谢熵(q_(CO_2))显著降低,而阔叶红松混交林土壤两者显著地增加(P0.05)。两种林分土壤由葡萄糖(Glu)引起的CO_2累积排放量(9.61—13.49 g C/m~2)显著大于实验施加的葡萄糖含碳量(6.4g C/m~2),同时由Glu引起的土壤微生物碳增量为3.65—27.18 g C/m~2,而施加Glu对土壤DOC含量影响较小。因此,这种由施加Glu引起的额外碳释放可能来源于土壤固有有机碳分解。融化培养结束时,阔叶红松混交林土壤未施氮处理由Glu引起的CO_2累积排放量在两种湿度条件下均显著大于次生白桦林土壤(P0.001);随着湿度的增加,两种林分土壤Glu引起的CO_2累积排放量显著增大(P0.001)。单施KNO_3显著地增加两种湿度的次生白桦林土壤Glu引起的CO_2累积排放量(P0.01)。单施KNO_3显著地增加了两种湿度次生白桦林土壤Glu引起的微生物碳(P0.001),单施NH_4Cl显著地增加低湿度阔叶红松混交林土壤Glu引起的微生物碳(P0.001)。结合前期报道的未冻结实验结果,发现冻结过程显著地影响外源Glu对温带森林土壤微生物呼吸和微生物碳的刺激效应(P0.05),并且无论冻结与否,温带森林土壤微生物呼吸和微生物碳对外源Glu的响应均与植被类型、土壤湿度、外源氮供给及其形态存在显著的相关性。  相似文献   

3.
We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.  相似文献   

4.
Large amounts of terrestrial organic C and N reserves lie in salt-affected environments, and their dynamics are not well understood. This study was conducted to investigate how the contents and dynamics of ‘native’ organic C and N in sandy soils under different plant species found in a salt-affected ecosystem were related to salinity and pH. Increasing soil pH was associated with significant decreases in total soil organic C and C/N ratio; particulate (0.05–2 mm) organic C, N and C/N; and the C/N ratio in mineral-associated (<0.05 mm) fraction. In addition, mineral-associated organic C and N significantly increased with an increase in clay content of sandy soils. During 90-day incubation, total CO2-C production per unit of soil organic C was dependent on pH [CO2-C production (g kg−1 organic C) = 22.5 pH – 119, R 2 = 0.79]. Similarly, increased pH was associated with increased release of mineral N from soils during 10-day incubation. Soil microbial biomass C and N were also positively related to pH. Metabolic quotient increased with an increase in soil pH, suggesting that increasing alkalinity in the salt-affected soil favoured the survival of a bacterial-dominated microbial community with low assimilation efficiency of organic C. As a result, increased CO2-C and mineral N were produced in alkaline saline soils (pH up to 10.0). This pH-stimulated mineralization of organic C and N mainly occurred in particulate but not in mineral-associated organic matter fractions. Our findings imply that, in addition to decreased plant productivity and the litter input, pH-stimulated mineralization of organic matter would also be responsible for a decreased amount of organic matter in alkaline salt-affected sandy soils.  相似文献   

5.
Schaeffer SM  Evans RD 《Oecologia》2005,145(3):425-433
Biogeochemical cycles in arid and semi-arid ecosystems depend upon the ability of soil microbes to use pulses of resources. Brief periods of high activity generally occur after precipitation events that provide access to energy and nutrients (carbon and nitrogen) for soil organisms. To better understand pulse-driven dynamics of microbial soil nitrogen (N) cycling in an arid Colorado Plateau ecosystem, we simulated a pulsed addition of labile carbon (C) and N in the field under the canopies of the major plant species in plant interspaces. Soil microbial activity and N cycling responded positively to added C while NH4+–N additions resulted in an accumulation of soil NO3. Increases in microbial activity were reflected in higher rates of respiration and N immobilization with C addition. When both C and N were added to soils, N losses via NH3 volatilization decreased. There was no effect of soil C or N availability on microbial biomass N suggesting that the level of microbial activity (respiration) may be more important than population size (biomass) in controlling short-term dynamics of inorganic and labile organic N. The effects of C and N pulses on soil microbial function and pools of NH4+–N and labile organic N were observed to last only for the duration of the moisture pulse created by treatment addition, while the effect on the NO3–N pool persisted after soils dried to pre-pulse moisture levels. We observed that increases in available C lead to greater ecosystem immobilization and retention of N in soil microbial biomass and also lowered rates of gaseous N loss. With the exception of trace gas N losses, the lack of interaction between available C and N on controlling N dynamics, and the subsequent reduction in plant available N with C addition has implications for the competitive relationships between plants species, plants and microbes, or both.  相似文献   

6.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

7.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

8.
Soil solarization, alone or combined with organic amendment, is an increasingly attractive approach for managing soil-borne plant pathogens in agricultural soils. Even though it consists in a relatively mild heating treatment, the increased soil temperature may strongly affect soil microbial processes and nutrients dynamics. This study aimed to investigate the impact of solarization, either with or without addition of farmyard manure, in soil dynamics of various C, N and P pools. Changes in total C, N and P contents and in some functionally-related labile pools (soil microbial biomass C and N, K2SO4-extractable C and N, basal respiration, KCl-exchangeable ammonium and nitrate, and water-soluble P) were followed across a 72-day field soil solarization experiment carried out during a summer period on a clay loam soil in Southern Italy. Soil physico-chemical properties (temperature, moisture content and pH) were also monitored. The average soil temperature at 8-cm depth in solarized soils approached 55 °C as compared to 35 °C found in nonsolarized soil. Two-way ANOVA (solarization×organic amendment) showed that both factors significantly affected most of the above variables, being the highest influence exerted by the organic amendment. With no manure addition, solarization did not significantly affect soil total C, N and P pools. Whereas soil pH, microbial biomass and, at a greater extent, K2SO4-extractable N and KCl-exchangeable ammonium were greatly affected. An increased release of water-soluble P was also found in solarized soils. Yet, solarization altered the quality of soluble organic residues released in soil as it lowered the C-to-N ratio of both soil microbial biomass and K2SO4-extractable organic substrates. Additionally, in solarized soils the metabolic quotient (qCO2) significantly increased while the microbial biomass C-to-total organic C ratio (microbial quotient) decreased over the whole time course. We argued that soil solarization promoted the mineralization of readily decomposable pools of the native soil organic matter (e.g. the microbial biomass) thus rendering larger, at least over a short-term, the available fraction of some soil mineral nutrients, namely N and P forms. However, over a longer prospective solarization may lead to an over-exploitation of labile organic resources in agricultural soils. Manure addition greatly increased the levels of both total and labile C, N and P pools. Thus, addition of organic amendments could represent an important strategy to protect agricultural lands from excessive soil resources exploitation and to maintain soil fertility while enhancing pest control.  相似文献   

9.
Elevated atmospheric carbon dioxide (CO2) has the potential to alter soil carbon (C) and nitrogen (N) cycling in arid ecosystems through changes in net primary productivity. However, an associated feedback exists because any sustained increases in plant productivity will depend upon the continued availability of soil N. We took soils from under the canopies of major shrubs, grasses, and plant interspaces in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 and incubated them in the laboratory with amendments of labile C and N to determine if elevated CO2 altered the mechanistic controls of soil C and N on microbial N cycling. Net ammonification increased under shrubs exposed to elevated CO2, while net nitrification decreased. Elevated CO2 treatments exhibited greater fluxes of N2O–N under Lycium spp., but not other microsites. The proportion of microbial/extractable organic N increased under shrubs exposed to elevated CO2. Heterotrophic N2‐fixation and C mineralization increased with C addition, while denitrification enzyme activity and N2O–N fluxes increased when C and N were added in combination. Laboratory results demonstrated the potential for elevated CO2 to affect soil N cycling under shrubs and supports the hypothesis that energy limited microbes may increase net inorganic N cycling rates as the amount of soil‐available C increases under elevated CO2. The effect of CO2 enrichment on N‐cycling processes is mediated by its effect on the plants, particularly shrubs. The potential for elevated atmospheric CO2 to lead to accumulation of NH4+ under shrubs and the subsequent volatilization of NH3 may result in greater losses of N from this system, leading to changes in the form and amount of plant‐available inorganic N. This introduces the potential for a negative feedback mechanism that could act to constrain the degree to which plants can increase productivity in the face of elevated atmospheric CO2.  相似文献   

10.
Soil amendment with pyrogenic organic matter (PyOM), also named biochar, is claimed to sequester carbon (C). However, possible interactions between PyOM and native soil organic carbon (SOC) may accelerate the loss of SOC, thus reducing PyOM's C sequestration potential. We combined the results of 46 studies in a meta‐analysis to investigate changes in CO2 emission of PyOM‐amended soils and to identify the causes of these changes and the possible factors involved. Our results showed a statistically significant increase of 28% in CO2 emission from PyOM‐amended soils. When grouped by PyOM C (PyC):SOC ratios, the group of studies with a ratio >2 showed a significant increase in CO2 emissions, but those with a ratio <2 showed no significant effect of PyOM application on CO2 emission. Our data are consistent with the hypothesis that increased CO2 emission after PyOM addition is additive and mainly derived from PyOM's labile C fractions. The PyC:SOC ratio provided the best predictor of increases in CO2 production after PyOM addition to soil. This meta‐analysis highlights the importance of taking into account the amount of applied PyC in relation to SOC for designing future decomposition experiments.  相似文献   

11.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

12.
Saetre P  Stark JM 《Oecologia》2005,142(2):247-260
Sporadic summer rainfall in semi-arid ecosystems can provide enough soil moisture to drastically increase CO2 efflux and rates of soil N cycling. The magnitudes of C and N pulses are highly variable, however, and the factors regulating these pulses are poorly understood. We examined changes in soil respiration, bacterial, fungal and microfaunal populations, and gross rates of N mineralization, nitrification, and NH4+ and NO3 immobilization during the 10 days following wetting of dry soils collected from stands of big sagebrush (Artemisia tridentata) and cheatgrass (Bromus tectorum) in central Utah. Soil CO2 production increased more than tenfold during the 17 h immediately following wetting. The labile organic C pool released by wetting was almost completely respired within 2–3 days, and was nearly three times as large in sagebrush soil as in cheatgrass. In spite of larger labile C pools beneath sagebrush, microbial and microfaunal populations were nearly equal in the two soils. Bacterial and fungal growth coincided with depletion of labile C, and populations peaked in both soils 2 days after wetting. Protozoan populations, whose biomass was nearly 3,000-fold lower than bacteria and fungi, peaked after 2–4 days. Gross N mineralization and nitrification rates were both faster in cheatgrass soil than in sagebrush, and caused greater nitrate accumulation in cheatgrass soil. Grazing of bacteria and fungi by protozoans and nematodes could explain neither temporal trends in N mineralization rates nor differences between soil types. However, a mass balance model indicated that the initial N pulse was associated with degradation of microbial substrates that were rich in N (C:N <8.3), and that microbes had shifted to substrates with lower N contents (C:N =15–25) by day 7 of the incubation. The model also suggested that the labile organic matter in cheatgrass soil had a lower C:N ratio than in sagebrush, and this promoted faster N cycling rates and greater N availability. This study provides evidence that the high N availability often associated with wetting of cheatgrass soils is a result of cheatgrass supplying substrates to microbes that are of high decomposability and N content.  相似文献   

13.
Rising carbon dioxide (CO2) concentrations and temperatures are expected to stimulate plant productivity and ecosystem C sequestration, but these effects require a concurrent increase in N availability for plants. Plants might indirectly promote N availability as they release organic C into the soil (e.g., by root exudation) that can increase microbial soil organic matter (SOM) decomposition (“priming effect”), and possibly the enzymatic breakdown of N-rich polymers, such as proteins, into bio-available units (“N mining”). We tested the adjustment of protein depolymerization to changing soil C and N availability in a laboratory experiment. We added easily available C or N sources to six boreal forest soils, and determined soil organic C mineralization, gross protein depolymerization and gross ammonification rates (using 15N pool dilution assays), and potential extracellular enzyme activities after 1 week of incubation. Added C sources were 13C-labelled to distinguish substrate from soil derived C mineralization. Observed effects reflect short-term adaptations of non-symbiotic soil microorganisms to increased C or N availability. Although C input promoted microbial growth and N demand, we did not find indicators of increased N mobilization from SOM polymers, given that none of the soils showed a significant increase in protein depolymerization, and only one soil showed a significant increase in N-targeting enzymes. Instead, our findings suggest that microorganisms immobilized the already available N more efficiently, as indicated by decreased ammonification and inorganic N concentrations. Likewise, although N input stimulated ammonification, we found no significant effect on protein depolymerization. Although our findings do not rule out in general that higher plant-soil C allocation can promote microbial N mining, they suggest that such an effect can be counteracted, at least in the short term, by increased microbial N immobilization, further aggravating plant N limitation.  相似文献   

14.
Conservation tillage in its version of permanent bed planting under zero-tillage with crop residue retention has been proposed as an alternative wheat production system for northwest Mexico. However, little is known about the dynamics of C and N in soils under wheat/maize on permanent beds (PB) where straw was burned, removed, partly removed or retained, as opposed to conventionally tilled beds (CTB) where straw was incorporated. We investigated the dynamics of soil C and N and normalized difference vegetative index (NDVI) crop values in zero-tilled PB and CTB after 26 successive maize and wheat crops. Organic C and total N were respectively, 1.15 and 1.17 times greater in PB with straw partly removed and with straw retained on the surface, than in CTB with straw incorporated. Organic C and total N were 1.10 times greater in soils with 300 kg N ha−1 added than in unfertilized soil. Cumulative production of CO2 was lower under CTB with straw incorporated than under PB treatments, and CO2 production increased with increments in inorganic fertilizer. The N-mineralization rate was 1.18 times greater than in unamended soils when 150 kg inorganic N ha−1 was applied, and 1.48 times greater when 300 kg inorganic N ha−1 was added. The N-mineralization rate was significantly (1.66 times) greater in PB where the straw was burned or retained on the surface than in CTB where the straw was incorporated, but significantly (1.25 times) lower than in PB with straw partly removed. The NDVI values reached a maximum 56 days after planting and decreased thereafter. The NDVI for unfertilized soil were similar for CTB with straw incorporated, PB with straw partly removed, and PB with straw retained on the surface, but significantly lower for PB with straw burned and PB with straw removed. In soils to which 150 or 300 kg N ha−1 was added, NDVI was significantly lower for PB with straw burned than for other treatments. Among other things, this suggests the utility of rotating maize or wheat with crops whose residues have lower C–N ratios, thus avoiding immobilization of large amounts of N for extended periods. PB with residue burning, however, is an unsustainable practice leading to low crop performance and soil and environmental degradation.  相似文献   

15.
The potential of biochar to improve numerous soil physical, chemical and biological properties is well known. However, previous research has concentrated on old and highly weathered tropical soils with poor fertility, while reports regarding the influence of biochar application on relatively young and fertile temperate prairie soils are limited. Furthermore, the mechanism(s) underlying biochar-induced effects on the plant availability of inorganic nitrogen (N) fertilizers and their relationship to greenhouse gas production is not well understood. The objective of this study was to determine the effect of a biochar soil amendment, produced by slow pyrolysis using shrub willow (Salix spp.) bioenergy feedstock, on CO2, N2O and CH4 fluxes by two contrasting marginal soils from Saskatchewan, Canada with and without added urea, over a 6-week incubation period. Biochar decreased soil N availability after 6 weeks only in the lower organic matter (Brown) soil, with no effect on the Black soil, regardless of fertilizer N addition, which was attributed to soil N immobilization by heterotrophs mineralizing the labile biochar-carbon. There appeared to be a synergistic effect when combining biochar and urea, evidenced by enhanced urease activity and higher initial nitrification rates compared to biochar or fertilization alone. The accelerated urea hydrolysis in the presence of biochar may increase NH3 volatilization losses associated with urea fertilization and, therefore, warrants further investigation. The decreased N2O emissions following biochar addition, with (both soils) or without (Black soil) fertilizer N, could be due to decreased ammonium and nitrate availability, along with changes in denitrification potential as related to improved aeration. Biochar significantly reduced the water-filled pore space, which concurrently increased CH4 consumption in both soils. The lack of biochar effect on CO2 emissions from either soil, with or without fertilizer N, suggests enhanced CO2 consumption by autotrophic nitrifiers. Biochar application appears to be an effective management approach for improving N2O and CH4 fluxes in temperate prairie soils.  相似文献   

16.
It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 μg N g–1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2. Received: 12 February 1999 / Accepted: 2 March 2000  相似文献   

17.
Nutrient‐poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (?16%, ns) and nematode mass was significantly reduced (?43%, P = 0.06). This reduction reflected a reduction in large‐diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro‐ and macro‐aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large‐diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top‐down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µ m to mm scale, and that this can affect soil microfaunal populations.  相似文献   

18.
As invasive plants become a greater threat to native ecosystems, we need to improve our understanding of the factors underlying their success and persistence. Over the past 30 years, the C3 nonnative plant Bromus inermis (smooth brome) has been spreading throughout the central grasslands in North America. Invasion by this grass has resulted in the local displacement of natives, including the tallgrass species Panicum virgatum (switchgrass). To determine if factors related to resource availability and plant–soil interactions were conferring a competitive advantage on smooth brome, field plots were set up under varying nitrogen (N) levels. Plots composed of a 1:1 ratio of smooth brome and switchgrass were located in a restored tallgrass prairie and were randomly assigned one of the following three N levels: (a) NH4NO3 added to increase available N, (b) sucrose added to reduce available N, and (c) no additions to serve as control. In addition, soil N status, soil respiration rates, plant growth, and litter decomposition rates were monitored. Results indicate that by the 2nd year, the addition of sucrose significantly reduced available soil N and additions of NH4NO3 increased it. Further, smooth brome had greater tiller density, mass, and canopy interception of light on N-enriched soils, whereas none of these characteristics were stimulated by added N in the case of switchgrass. This suggests that smooth brome may have a competitive advantage on higher-N soils. Smooth-brome plant tissue also had a lower carbon–nitrogen (C:N) ratio and a higher decomposition rate than switchgrass and thus may cycle N more rapidly in the plant–soil system. These differences suggest a possible mechanism for the persistence of smooth brome in the tallgrass prairie: Efficient recycling of nutrient-rich litter under patches of smooth brome may confer a competitive advantage that enables it to persist in remnant or restored prairies. Increased N deposition associated with human activity and changing land use may play a critical role in the persistence of smooth brome and other N-philic exotic species.  相似文献   

19.
The effects of slow (apatite, biotite) and fast-release nutrients (P, K, Mg) on C and N mineralization in acid forest soil were studied. These nutrients were applied alone or together with urea or urea and limestone. The production of CO2 in the soil samples taken one and three growing seasons after the application was lower in the soils treated with the fast-release nutrients than in the untreated soils. Similar reduction of microbial activity was not seen after the apatite and apatite+biotite treatments. In the first growing season, urea and urea+limestone enhanced CO2 production, but after three growing seasons, the opposite was true. Apatite and apatite+biotite added together with urea did not compensate for the decreasing effect of urea on the CO2 production. The addition of fast-release salts increased somewhat the concentration of NH inf4 sup+ in the soil and more NH4 + accumulated during laboratory incubation in the soil samples taken one growing season after the application. The urea addition immediately increased the concentrations of NH4 + and of NO3 in the soil, but, three growing seasons after application, urea had only a slight increasing effect on mineral N content of the soil. Slow-release nutrients seem to have a more favourable effect than fast-release salts on nutrient turnover in acid forest soil.  相似文献   

20.
Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号