首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epichloe typhina is an endophytic fungus, while Cladosporium phlei is a pathogenic fungus of the timothy plant (Phleum pretense L.). We found two activities in the culture filtrate of E. typhina: one stimulated the pathogenic fungus, C. phlei, to produce phleichrome and the other inhibited its growth. The active ingredients that stimulated the production of phleichrome and inhibited the growth of C. phlei were isolated and characterized. The isolated compounds were identified as cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe), which were stimulatory compounds, and p-hydroxybenzaldehyde, which was the growth inhibitory compound, based on an analysis of their spectral data. Of the two stimulatory compounds, cyclo-(L-Pro-L-Phe) showed higher activity. However, when 500 microg of cyclo-(L-Pro-L-Phe) was spotted on the TLC plate for bio-autography, a growth inhibitory zone was identified in the central red region, which contained phleichrome. On the other hand, phleichrome showed antifungal activity against E. typhina in the light, so it is assumed that there might be antagonism between the endophytic fungus, E. typhina, and the pathogenic fungus, C. phlei.  相似文献   

2.
Regulation of secondary metabolite production in filamentous ascomycetes   总被引:1,自引:0,他引:1  
Fungi are renowned for their ability to produce bioactive small molecules otherwise known as secondary metabolites. These molecules have attracted much attention due to both detrimental (e.g. toxins) and beneficial (e.g. pharmaceuticals) effects on human endeavors. Once the topic only of chemical and biochemical studies, secondary metabolism research has reached a sophisticated level in the realm of genetic regulation. This review covers the latest insights into the processes regulating secondary metabolite production in filamentous fungi.  相似文献   

3.
Cellulase production was investigated in a culture of a strain of Acremonium cellulolyticus. The medium components were optimized for the improvement of cellulase production. The maximum production of cellulolytic enzymes was obtained in a medium containing (grams per liter) 50 Solka Floc, 5 (NH4)2SO4, 24 KH2PO4, 4.7 potassium tartrate hemihydrate, 1.2 MgSO4.7H2O, 1 Tween 80, 4 urea, 0.01 ZnSO4.7H2O, 0.01 MnSO4.6H2O, and 0.01 CuSO4.7H2O, with a pH of 4.0. In the flask culture, 15.5 filter paper units (FPU)/mL of maximum cellulase activity was obtained, 17.42 FPU/mL in a 7-L bioreactor, and 13.08 FPU/mL in a 50-L scale bioreactor for 4-8 d at 30 degrees C. Average production rates were 1.94 FPU/mL.d in flasks, 2.86 FPU/mL.d in the 7-L bioreactor, and 2.56 FPU/mL.d in the 50-L bioreactor. Cellulase production on a small scale was successfully reproduced in the 50-L pilot scale bioreactor. Saccharification activity from A. cellulolyticus was compared with cellulolytic enzymes produced by other strains. The A. cellulolyticus culture broth had a comparable saccharification yield in comparison with those of other Trichoderma enzymes (GC220 or Cellulosin T2) under the same total cellulase activity. Its saccharification yield (percent of released reducing sugar to used dried substrate) was 60%, and its glucose content was 83%.  相似文献   

4.
In previous studies, the biological characteristics of the fungus Cladosporium phlei and its genetic manipulation by transformation were assessed to improve production of the fungal pigment, phleichrome, which is a fungal perylenequinone that plays an important role in the production of a photodynamic therapeutic agent. However, the low production of this metabolite by the wild-type strain has limited its application. Thus, we attempted to clone and characterize the genes that encode polyketide synthases (PKS), which are responsible for the synthesis of fungal pigments such as perylenequinones including phleichrome, elsinochrome and cercosporin. Thus, we performed genomic DNA PCR using 11 different combinations of degenerate primers targeting conserved domains including β-ketoacyl synthase and acyltransferase domains. Sequence comparison of the PCR amplicons revealed a high homology to known PKSs, and four different PKS genes showing a high similarity to three representative types of PKS genes were amplified. To obtain full-length PKS genes, an ordered gene library of a phleichrome-producing C. phlei strain (ATCC 36193) was constructed in a fosmid vector and 4800 clones were analyzed using a simple pyramidal arrangement system. This hierarchical clustering method combines the efficiency of PCR with enhanced specificity. Among the three representative types of PKSs, two reducing, one partially reducing, and one non-reducing PKS were identified. These genes were subsequently cloned, sequenced, and characterized. Biological characterization of these genes to determine their roles in phleichrome production is underway, with the ultimate aim of engineering this pathway to overproduce the desired substance.  相似文献   

5.
Engineering the plant cell factory for secondary metabolite production   总被引:8,自引:0,他引:8  
Plant secondary metabolism is very important for traits such as flower color, flavor of food, and resistance against pests and diseases. Moreover, it is the source of many fine chemicals such as drugs, dyes, flavors, and fragrances. It is thus of interest to be able to engineer the secondary metabolite production of the plant cell factory, e.g. to produce more of a fine chemical, to produce less of a toxic compound, or even to make new compounds, Engineering of plant secondary metabolism is feasible nowadays, but it requires knowledge of the biosynthetic pathways involved. To increase secondary metabolite production different strategies can be followed, such as overcoming rate limiting steps, reducing flux through competitive pathways, reducing catabolism and overexpression of regulatory genes. For this purpose genes of plant origin can be overexpressed, but also microbial genes have been used successfully. Overexpression of plant genes in microorganisms is another approach, which might be of interest for bioconversion of readily available precursors into valuable fine chemicals. Several examples will be given to illustrate these various approaches. The constraints of metabolic engineering of the plant cell factory will also be discussed. Our limited knowledge of secondary metabolite pathways and the genes involved is one of the main bottlenecks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Hamam A  Lew RR 《Eukaryotic cell》2012,11(5):694-702
We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.  相似文献   

7.
The biotransformation of commodity aromatic chemicals into dihydroxy derivatives was studied. A strain isolated from the invironment, Pseudomonas JI104, used benzene, toluene, and other hydrocarbons as sole carbon and energy sources. We selected mutants unable to grow with benzene, and among these, screened for strains with deficient cis-benzenglycol dehydrogenase able to stably produce cis-benzeneglycol when another carbon source was co-metabolized.We exained the possibility of cis-benzeneglycol production by growing the mutant strain in the presence of benzene vapor. Ethanol was the carbon and energy source most adapted to the cis-benzeneglycol production phase, and lactate or propanol could also be used. Glucose inhibited the production of the metabolite.The growth rates were barely affected by the presence of benzene at a reduced partial pressure (less than 20% of saturation), showing that continuous culture is possible. In a batch process, 0.54g·1−1 of a cell suspension produced 5.1 mmol·1−1cis-benzeneglycol in 27 h, using ethanol as the energy source.  相似文献   

8.

Background  

Filamentous fungi are the most widely used eukaryotic biocatalysts in industrial and chemical applications. Consequently, there is tremendous interest in methodology that can use the power of genetics to develop strains with improved performance. For example, Metarhizium anisopliae is a broad host range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. However, it use is limited by the relatively low tolerance of this species to abiotic stresses such as heat, with most strains displaying little to no growth between 35–37°C. In this study, we used a newly developed automated continuous culture method called the Evolugator™, which takes advantage of a natural selection-adaptation strategy, to select for thermotolerant variants of M. anisopliae strain 2575 displaying robust growth at 37°C.  相似文献   

9.
Solid state (substrate) fermentation (SSF) has been used successfully for the production of enzymes and secondary metabolites. These products are associated with the stationary phase of microbial growth and are produced on an industrial scale for use in agriculture and the treatment of disease. Many of these secondary metabolites are still produced by submerged liquid fermentations (SmF) even though production by this method has been shown to be less efficient than SSF. As large-scale production increases further, so do the costs and energy demands. SSF has been shown to produce a more stable product, requiring less energy, in smaller fermenters, with easier downstream processing measures. In this article we review an important area of biotechnology, since the recent evidence indicates that bacteria and fungi, growing under SSF conditions, are more than capable of supplying the growing global demand for secondary metabolites.  相似文献   

10.
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.  相似文献   

11.
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.  相似文献   

12.
A characterization of a non-pigment producing mutant Monascus purpureus M12 compared with its parental strain Monascus purpureus Went CBS 109.07 has been performed aiming to investigate the relation between pigment biosynthesis and other characteristics of these fungi. A comparison has been made of morphological features, some physiological properties and biochemical activities of both strains. The albino mutant exhibits an anamorph life cycle, high conidia forming capability, slower radial growth rate and temperature sensitivity. The assimilation capacity of both strains for mono-, disaccharides and some alcohols is in the same range (YX/C 0.2 – 0.35), while the red strain has a higher fermentation capacity. In a selected albino mutant, the growth rate, metabolic activity and capacity for production of typical for Monascus fungi secondary metabolites were reduced considerably. Hydrolytic activity towards natural substrates expressed through glucoamylase and protease was approximately 10 fold lower in the non pigment producing strain (0.05 – 0.08 U/mg protein and 0.01 – 0.07 U/mg protein respectively) compared with the red one. Important qualitative differences between both strains was found in fatty acid composition and in the production of citrinin and monacolin. The mutant strain possessed C17, C20 and C22 fatty acids and did not produce citrinin. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Cells of Mikania glomerata, Cephaelis ipecacuanha and Maytenus aquifolia were co-cultured in a two-phase system using filter paper as a solid support. The species were co-cultured in all possible paired combinations. Interaction between Mikania and Maytenus cells resulted in increased biomass production of Maytenus cells, but the friedelin content was reduced. Co-cultivation of Cephaelis and Mikania cells enhanced coumarin content, but inhibited the growth of Mikania cells. However, yield of emetine as well as Cephaelis biomass accumulation were positively stimulated by the co-cultivation. Results indicate a possible occurrence of allelopathy in such a system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Abstract A reduced pigmentation mutant was isolated from Aureobasidium pullulans ATCC 42023 by chemical mutagenesis and was subsequently characterized. The pigment melanin was present not only in A. pullulans cells but also contaminated the elaborated polysaccharide and thus, was measured in both fractions. Cellular and polysaccharide melanin levels of the mutant strain were at least 11-fold and 18-fold reduced, respectivelu, compared toits parent strain after 7 days of growth at 30°C whether sucrose or glucose served as the carbon source in the culture medium. Polysaccharide and cell dry weight levels of the mutant were very similar to those observed for the parent after growth on sucrose or glucose as the source of carbon over a period of 7 days at 30°C. The pullulan content of the polysaccharide produced by the parent or mutant strain was lower for sucrose-grown cells than for glucose-grown cells. It was also noted that the pullulan content of the polysaccharide elaborated by the mutant strain was slightly higher than that of the polysaccharide produced by the parent strain after growth on either sucrose or glucose.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.  相似文献   

16.
During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the (13)C-pigment molecules from mycelia cultivated with [1-(13)C]-, [2-(13)C]-, or [1, 2-(13)C]acetate by (13)C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.  相似文献   

17.
Growth characteristics of a spontaneous mutant of shiitake Lentinula edodes (Berk.) Pegler were studied. The mutant was first detected as a result of changes in the growth habit of the normal strain in the liquid medium. Abundant formation of aerial hyphae was distinctive. In sawdust logs the mutant strain produced abnormal basidiocarps, lacking stipe, gill and spore formation.
Growth rates of the normal and the mutant strain were compared in two liquid media: malt-yeast extract and Leatham's medium. The increase in dry weight of the mutant's mycelium was much higher than that of the wild type in both media, which indicated better adaptation to liquid culture. In the sawdust, however, growth of the mutant was slower than that of the normal strain. The mutant's intracellular protein content was lower than that of the normal strain. The pH of the liquid cultures differed: the wild type decreased the pH during growth, while the mutant increased the pH. Comparison of the protein and esterase isoenzyme profiles of the vegetative hyphae of both strains indicated profound differences. One protein (pI 6.5, 39 kDa), which in earlier studies has been found to be typical of L. edodes species, was absent from the mutant's profile. Differences in the esterase profile were also clear.  相似文献   

18.
Eades CJ  Hintz WE 《Gene》2000,255(1):25-34
We describe the cloning and sequence characterization of three Class I alpha-1,2-mannosidase genes from the filamentous fungus Aspergillus nidulans. We used degenerate PCR primers to amplify a portion of the alpha-1,2-mannosidase IA gene and used the PCR fragment to isolate the 2495 nt genomic gene plus several hundred bases of flanking region. Putative introns were confirmed by RT-PCR. Coding regions of the genomic sequence were used to identify two additional members of the gene family by BLAST search of the A. nidulans EST sequencing database. Specific PCR primers were designed to amplify portions of these genes which were used to isolate the genomic sequences. The 1619 nt coding region of the alpha-1,2-mannosidase IB gene and the 1759 nt coding region of the alpha-1,2-mannosidase IC gene, plus flanking regions, were fully sequenced. All three genes appeared to encode type-II transmembrane proteins that are typical of Class I alpha-1,2-mannosidases. The deduced protein sequences were aligned with 11 published Class I alpha-1, 2-mannosidases to determine sequence relationships. All three genes exhibited high similarity to other fungal alpha-1,2-mannosidases. The alpha-1,2-mannosidase IB exhibited very high similarity to the Aspergillus satoi and Penicillium citrinum alpha-1,2-mannosidases and likely represents an orthologue of these genes. Phylogenetic analysis suggests that the three A. nidulans Class I alpha-1, 2-mannosidases arose from duplication events that occurred after the divergence of fungi from animals and insects. This is the first report of the existence of multiple Class I mannosidases in a single fungal species.  相似文献   

19.
Chemical investigation of the culture broth extracts of the marine-derived fungus Massarina sp. (strain CNT-016) has yielded two secondary metabolites, spiromassaritone (1) and massariphenone (2), as well as the previously reported fungal metabolites 6-epi-5'-hydroxy-mycosporulone (3) and enalin A (4). The structures of these compounds were established by a variety of one- and two-dimensional NMR experiments, while the relative configuration of spiromassaritone (1) was determined by X-ray crystallographic methods. The fungal strain was isolated as a sterile mycelium from an ocean mud sample and identified using ITS sequence analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号