首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neural crest (NC) corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potentials. The derivatives of the NC at trunk level include neurons and glial cells of the peripheral nervous system in addition to melanocytes, smooth muscle cells and some endocrine cells. Environmental factors control the fate decisions of NC cells. Despite the well-known influence of flavonoids on the central nervous system, the issue of whether they also influence NC cells has not been yet addressed. Flavonoids are polyphenolic compounds that are integral components of the human diet. The biological activities of these compounds cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and modulation of inflammatory response. In the present work, we have investigated the actions of the flavonoids hesperidin, rutin and quercetin on NC cells of quail, in vitro. We show for the first time, that hesperidin and rutin increase the viability of trunk NC cells in culture, without affecting cell differentiation and proliferation. The molecular mechanism of this action is dependent on ERK2 and PI3K pathways. Quercetin had no effect on NC progenitors. Taken together, these results suggest that flavonoids hesperidin and rutin increase NC cell survival, which may be useful against the toxicity of some chemicals during embryonic development.  相似文献   

2.
Several flavonoids (quercetin, hesperidin, rutin and esculin) were acylated with fatty acids using an immobilised lipase from Candida antarctica in 2-methyl-2-butanol at 60 °C. It appears that esculin with primary OH on the sugar part is the most reactive substrate. With palmitic acid as acyl donor, the conversion yields were of about 80, 71 and 38%, respectively, for esculin, rutin and hesperidin. No reaction was observed with aglycon flavonoid (quercetin). For a given flavonoid (rutin), the conversion yield increased from 42 to 76% when the carbon number of the fatty acids rose from C6 to C12. For fatty acids with higher carbon-chain length, both conversion yield and initial rate dropped slightly. Furthermore, compared to the saturated fatty acid (C18: 0), the unsaturated one (C18: 1) exhibited a lower reactivity. For all molecules studied 1H nuclear magnetic resonance (NMR) and 13C NMR analyses indicated that only flavonoid monoester was produced.  相似文献   

3.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

4.
Flavonoids, the potent antioxidant and anti-inflammatory plant compounds, require deglycosylation for absorption across the intestine. Intestinal bacteria are indispensable for the hydrolysis of flavonoid diglycosides. We isolated, for the first time, three anaerobic Lactobacillus -like strains designated as MF-01, MF-02 and MF-03 from the cecum of chicken capable of converting flavonoid diglycosides into bioactive aglycones. All the isolated strains were found to be active in the conversion of quercetin-3-rhamnoglucoside (rutin) and hesperetin-7-rhamnoglucoside (hesperidin) into their aglyconic forms. No metabolites were detected after the fermentation tests with naringenin-7-rhamnoglucoside (naringin). The degradation rates of flavonoids and influence of different carbon sources, following incubation with isolated strains, were also monitored. Overall maltose resulted in rapid degradation of flavonoids. However, when organic acids (lactate, acetate, butyrate or propionate) were added to the basal medium as carbon source, flavonoid degradation was completely inhibited. Using consortium of three isolated strains, fructooligosaccharide (10 g L−1) supplementation was found to be imperative for preserving aglycone hesperitin while organic acids supplementation (10 g L−1) to the fermentation medium resulted in rapid degradation of hesperitin indicating that the metabolic fate of flavonoids may be related to the gut metabolic behavior. Butyrate and propionate also suppressed rutin deglycosylation by the consortium.  相似文献   

5.
The antibacterial activities of flavonoids were found by the paper disk method to be enhanced by combining or mixing them. The combinations of quercetin and quercitrin, quercetin and morin, and quercetin and rutin were much more active than either flavonoid alone. Although rutin did not show activity in itself, the antibacterial activities of quercetin and morin were enhanced in the presence of rutin. The antibacterial activities of flavonoids, in combination with morin and rutin, were evaluated, based on the minimum inhibition concentration (MIC) in a liquid culture, by using Salmonella enteritidis and Bacillus cereus as the test bacteria. The activities of galangin, kaempherol, myricetin and fisetin were each enhanced in the presence of rutin when S. enteritidis was used as the test bacterium. The MIC value for kaempherol was markedly decreased by the addition of rutin. Morin inhibited DNA synthesis, and this effect was promoted by rutin at a concentration of 25 microg/ml.  相似文献   

6.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

7.
A large number of biologically active compounds are present in ripe citrus fruits. However, few studies have been focused on the changes in flavonoids and the evolution of antioxidant activity during citrus fruit growth. In this study, fruits of five citrus cultivars cultivated in China were sampled at 60–210 days post‐anthesis (DPA) at intervals of 30 days. The amounts of main flavonoids in the peel and pulp were analyzed by HPLC and their activities were studied by DPPH, ABTS and FRAP. The results showed that the contents of hesperidin, diosmin, eriodictyol, rutin and nobiletin increased before 90 DPA and then decreased with the growth and development of fruits, but an opposite tendency was observed for naringin and narirutin. The antioxidant activities in citrus peel and pulp were found to be significantly correlated with some flavonoids. The results may be of guiding values in citrus production and utilization of citrus fruit by‐products.  相似文献   

8.
Gao Z  Xu H  Chen X  Chen H 《Life sciences》2003,73(12):1599-1607
The versatile benefit effects of flavonoids lead some nutritionists to believe that they are micronutrients. However, excess intake of flavonoids may cause side effects. In this paper, the effects produced by a higher intake of rutin and baicalin on antioxidant status as well as trace minerals such as iron, copper and zinc in rat tissues were studied. When rats were fed a rutin or baicalin containing diet (1%) for 20 days, the body weight gain was lower than that of the control group. Both rutin and baicalin caused significant a decrease of catalase activity and a moderate increase of total superoxide dismutase activity in the liver. The total antioxidant status of flavonoid fed rats was increased in the liver but decreased in the serum. In comparison to the control group, the lipid peroxidation level in the liver of the rutin fed group was significantly decreased; however, there was no statistical significance in the liver of the baicalin fed group and the brain of both flavonoids groups. The liver homogenates of both flavonoid fed rats significantly inhibited alkyl radical-induced lipid peroxidation. The iron contents in the liver of flavonoid fed rats were significantly decreased; rutin also caused zinc and copper decrease in the liver. These results indicated that high flavonoid intake can improve rat antioxidant systems in the liver; while it can also cause a trace mineral decrease and, in turn, reduce the activities of some metal-containing enzymes and may cause harmful effects on health.  相似文献   

9.
Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin, naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids catalysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid chromatography–mass spectrometry (UHPLC–MS) showed higher conversion yields (%) for naringin and rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95), and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC50 of 110.35 and 117.51?μM, respectively). Kinetic analysis showed significant differences (p?Km values, whereas the values for Vmax were the same, implying the competitive nature of XO inhibition.  相似文献   

10.
Flavonoids as superoxide scavengers and antioxidants   总被引:26,自引:1,他引:25  
The superoxide anions scavenging activity and antioxidation of seven flavonoids--quercetin, rutin, morin, acacetin, hispidulin, hesperidin, and naringin--were studied. The superoxide anions were generated in a phenazin methosulphate-NADH system and were assayed by reduction of nitroblue tetrazolium. The scavenging activity ranked: rutin was the strongest, and quercetin and naringin the second, while morin and hispidulin were very weak. The concentration values yielding 50% inhibition of lipid peroxidation in mouse liver homogenate were in order of 10(-6) M for quercetin, rutin, and morin; and of 10(-5) M for acacetin and hispidulin, while naringin and hesperidin had no antioxidative action. In comparison with the antioxidative and scavenging activities of flavonoids, there are no correlations.  相似文献   

11.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

12.
Rose K  Fetzner S 《Plasmid》2006,55(3):249-254
By pulsed-field gel electrophoresis, a linear DNA element of about 100 kb was identified in Actinoplanes missouriensis(T) DSM 43046, which grows on the flavonoids hesperidin, rutin and quercetin, and which contains a CO forming quercetinase. Among six Actinoplanes species and strains tested, including A. globisporus(T) DSM 43857, A. philippinensis(T) DSM 43019, A. brasiliensis(T) DSM 43805, A. auranticolor(T) DSM 43031, and A. utahensis(T) DSM 43147, only the A. missouriensis strain exhibited such a genetic element. The linear plasmid, named pAM1, has proteins covalently attached to its 5'-ends like other linear replicons of actinomycetes. Attempts to cure pAM1 failed, however a mutant with reduced plasmid content was obtained, which showed reduced ability to degrade the flavonoid rutinosides rutin and hesperidin. Plasmid pAM1 is the first extrachromosomal genetic element identified in an Actinoplanes species and may be useful to develop genetic tools for biotechnologically important Actinoplanes strains.  相似文献   

13.
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.  相似文献   

14.
Inhibitions of the autoxidation of linoleic acid by flavonoids in micelles.   总被引:1,自引:0,他引:1  
The activities of five flavonoids as chain-breaking antioxidants have been studied for the autoxidation of linoleic acid in cetyl trimethylammonium bromide (CTAB) micelles at 37 degrees C. Flavonols such as quercetin, rutin and morin exhibited antioxidant activities, while two flavanones, naringin and hesperidin, did not suppress the oxidation appreciably. The ratio of rate constants for inhibition and propagation kinh/kp and stoichiometric factor n were determined.  相似文献   

15.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 microM, morin and rutin had similar effects at concentrations of about 200 microM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin greater than morin greater than rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

16.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

17.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

18.
采用单层贴壁分化的方法在无血清条件下诱导同源饲养层培养的人胚胎干细胞定向分化,得到了高比例的神经前体细胞(97.5±0.83)%(P<0.05)。这些神经前体细胞具有分化为神经元、星形胶质细胞和少突胶质细胞的能力。在长期的传代培养中发现,随着培养时间的延长,nestin阳性的神经前体细胞比例下降,同时发育能力也发生了变化。在传代培养的早期,神经前体细胞发育为神经元的比例很高,几乎没有胶质细胞分化出来。随着培养时间的延长,胶质细胞的比例逐渐上升。这与体内神经系统的发育过程非常相似。进一步研究发现具有bHLH(basic helix-loop-helix)结构域的转录因子neurogenein2(Ngn2)和Olig2可能在这一变化中起重要作用。因此,人胚胎干细胞来源的神经前体细胞能够模拟体内神经发育的模式,为在体外研究人的神经发育和再生医学奠定了基础。  相似文献   

19.
20.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号