首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cytochrome b6-f complex from spinach thylakoids has been reconstituted with an oxygen-evolving Photosystem II (PSII) preparation isolated from the same source to give oxygenic plastocyanin reductase activity. We observe that (i) mixing of the two complexes in concentrated form prior to dilution with the assay medium is necessary for optimal reconstitution of activity; (ii) incubation for longer times after dilution can also give substantial reconstitution if the two complexes are added separately to the assay mixture; (iii) either monovalent or divalent cations are required for optimum activity in the reconstituted system; (iv) titration of the cytochrome complex with varying amounts of the PSII complex gave a saturation of the plastocyanin reduction activity at a cytochrome complex/PSII ratio of 3-4; (v) kinetic analysis of plastocyanin photoreduction by Photosystem II shows nonlinearity, while first-order reduction kinetics are observed with duroquinol as electron donor; and (vi) as the concentration of plastocyanin is increased, the half-time of the reduction increases. These observations are considered in terms of a functional association between PSII and the cytochrome b6-f complex in this reconstituted system, and the relevance of these observations to the situation in vivo is discussed.  相似文献   

3.
A simple, rapid procedure suitable for large scale preparation of a lipid deficient cytochrome b6-f complex from spinach chloroplasts has been developed. The procedure involves solubilization with a mixture of sodium cholate and octylglucoside, ammonium sulfate fractionation and calcium phosphate column chromatography. The purified complex contains, in nanomoles per milligram protein, 20.6 cytochrome b, 10.8 cytochrome f and 54 phospholipids. The purified complex has little plastoquinol-cytochrome c reductase activity in the absence of added lipid. Full reductase activity was reconstituted by the addition of plastoquinone prior to the addition of lipid.  相似文献   

4.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

5.
The spatial distribution of the chloroplast thylakoid protein complex comprised of cytochromes f and b-563, and the Rieske iron-sulfur protein (Cyt b6-f) has been controversial because of conflicting results obtained by different techniques. We have combined the following biochemical and immunochemical techniques to approach this question: (1) French press disruption of thylakoids, followed by repeated two-phase aqueous polymer partitioning to separate inside-out grana from right-side-out stroma membrane fragments; (2) electrophoretic analysis followed by the 3,3',5,5'-tetramethylbenzidine stain for cytochrome hemes; (3) electroblot analysis with anti-Cyt b6-f antibodies; (4) agglutination of membrane fragments with anti-Cyt b6-f antibodies; and (5) post-embedment thin-section immunolabeling of chemically fixed or ultrarapidly frozen chloroplasts with anti-Cyt b6-f antibodies. Our results indicate that the complex is present in both of the isolated membrane fragment populations in similar amounts, with the bulk of the immunoreactive sites exposed to the thylakoidal lumen. Direct immunolabeling of thin-sectioned chloroplasts resulted in localization of the complex throughout the thylakoids, without specialized compartmentation. These results provide both the temporal and spatial resolution necessary for accurate localization of the complex. We concur with models proposing distribution of Cyt b6-f throughout all thylakoid membranes.  相似文献   

6.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

7.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

8.
The orientation of specific polypeptides of the cytochrome b6-f complex with respect to the chloroplast stromal phase has been studied using trinitrobenzenesulfonate (TNBS) and pronase E as impermeant modifying reagents. Of the four polypeptides of the complex (33,23,20 and 17 kDa), only cytochrome f was labeled by 14C-TNBS in unfractionated membranes. However, to a varying degree, all of the constituent polypeptides were sensitive to pronase digestion and, in the case of cytochrome f, it was possible, by immunoblotting techniques to identify several degradation products. These results are discussed in relation to the organization of the cytochrome complex in thylakoid membranes and argue for an exposure to the stromal phase of all of the polypeptides, while functional considerations indicate that at least cytochrome f and the Rieske iron-sulfur protein have a possible transmembrane organization.  相似文献   

9.
Photosystem I (PSI) is a pigment-protein complex required for the light-dependent reactions of photosynthesis and participates in light-harvesting and redox-driven chloroplast metabolism. Assembly of PSI into supercomplexes with light harvesting complex (LHC) II, cytochrome b6f (Cytb6f) or NAD(P)H dehydrogenase complex (NDH) has been proposed as a means for regulating photosynthesis. However, structural details about the binding positions in plant PSI are lacking. We analyzed large data sets of electron microscopy single particle projections of supercomplexes obtained from the stroma membrane of Arabidopsis thaliana. By single particle analysis, we established the binding position of Cytb6f at the antenna side of PSI. The rectangular-shaped Cytb6f dimer binds at the side where Lhca1 is located. The complex binds with its short side rather than its long side to PSI, which may explain why these supercomplexes are difficult to purify and easily disrupted. Refined analysis of the interaction between PSI and the NDH complex indicates that in total up to 6 copies of PSI can arrange with one NDH complex. Most PSI-NDH supercomplexes appeared to have 1–3 PSI copies associated. Finally, the PSI-LHCII supercomplex was found to bind an additional LHCII trimer at two positions on the LHCI side in Arabidopsis. The organization of PSI, either in a complex with NDH or with Cytb6f, may improve regulation of electron transport by the control of binding partners and distances in small domains.  相似文献   

10.
An azidoquinone derivative, 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl[3H]octyl)-1,4-benzoquinone (azido-Q), was used to study the plastoquinone-protein interaction and to identify the plastoquinone-binding protein in the cytochrome b6-f complex from spinach chloroplasts. When the lipid- and plastoquinone-deficient cytochrome b6-f complex is incubated with varying concentrations of azido-Q and illuminated with long wavelength UV light for 7 min at 2 degrees C, the enzymatic activity, assayed after reconstitution with lipid, decreases as the concentration of azido-Q increases. Maximum inactivation (45%) is observed when 30 mol of azido-Q is used per mol of cytochrome f. The extent of the decrease in activity upon illumination correlates with the amount of azido-Q incorporated into the protein. The 50% inactivation is in good agreement with that expected based on the amount of plastoquinone deficiency of the isolated enzyme complex. When the photolyzed, [3H]azido-Q-treated sample is extracted with organic solvent and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, radioactivity is found primarily in the Mr = 17,000 subunit. When the enzyme is pretreated with the electron transfer inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone or 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole, significantly less radioactive label is observed in the Mr = 17,000 protein, suggesting that the action sites of these inhibitors are the same or near the plastoquinone-binding site. When the deficient complex is reconstituted with glycolipid prior to the addition of azido-Q, less than 5% inactivation is observed upon photolysis, and the amount of radioactive label on the Mr = 17,000 protein decreases greatly, suggesting that the plastoquinone-binding site is easily masked by glycolipid when endogenous plastoquinone is absent. Plastoquinol-2 apparently competes with azido-Q for the plastoquinone-binding site since it decreases the radioactive label on the Mr = 17,000 protein.  相似文献   

11.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

12.
A preparation is described through which large quantities of pure, active cytochrome b6/f complex can be isolated from spinach chloroplasts. The resulting complex is at least 90% pure with respect to the maximum content of redox centers, consists of four polypeptides according to polyacrylamide gel electrophoresis, and lacks both ferredoxin: NADP+ oxidoreductase and the high molecular weight form of cytochrome f seen in some other preparations. The complex contains 2 mol b6 and 2 atoms of nonheme iron per mole of cytochrome f, and possesses a high plastoquinol-plastocyanin oxidoreductase activity (Cyt f turnover no. 20-35 s-1). The present preparation should be helpful in the effort to crystallize the cytochrome b6/f complex.  相似文献   

13.
Three of the membrane-spanning polypeptides of the chloroplast cytochrome (cyt) b6f complex were sequentially released from the thylakoid membrane, in the order cyt b6, suIV and Rieske iron-sulfur protein, as the pH was increased from 10 to 12, a protocol usually employed to remove peripheral proteins from membranes. The fourth polypeptide of the cyt b6f complex, cyt f, which spans the membrane once, was apparently not released. The pH values for half-release at low ionic strength were approximately 10.7, 11.1 and 11.3 respectively. The separation of the polypeptides of the complex and the sequential release is readily seen at pH 11, where the loss from the membrane of cyt b6, suIV and Fe iron-sulfur center is approximately 90%, 50% and 20%, respectively. the release of cyt b6 from the membrane was reflected by the absence of its characteristic reduced minus oxidized absorbance signal. The pH values at which the release occurred increased as the ionic strength was raised, implying that the release of the b6f polypeptides arises from extrusion due to repulsive electrostatic interactions probably caused by deprotonation of tyrosine and lysine residues. The lipid content of the released polypeptides was very low, consistent with the observation of a non-membranous state. It is proposed that the pH-dependent extrusion requires two electrostatic effects at alkaline pH higher than approximately 10.5: (i) increased electrostatic repulsion between neighbouring polypeptides of the complex, arising from increased net negative charge in the peripheral segments of these polypeptides, which can cause separation of the polypeptides from the complex; and (ii) ionization of residues such as tyrosine in the membrane-spanning alpha-helices, and neutralization of residues such as lysine which can bind to the negative membrane surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Isolation of a cytochrome b 6 -f particle from chloroplasts   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
《BBA》1986,851(2):239-248
The distribution of the b6/f complex among stacked and unstacked thylakoid membranes was studied by immunocytochemistry and freeze-fracture analysis of mutants of Chlamydomonas reinhardtii lacking the complex. Immunogold labeling demonstrates the presence of b6/f complex in both regions of the thylakoid membrane in spinach and in C. reinhardtii. Numerous modifications were observed in the ultrastructure of the thylakoid membranes of mutants from C. reinhardtii lacking the complex. These modifications are consistent with the presence of b6/f complexes in different states of association in the stacked and unstacked regions of the thylakoid membrane. In particular we present evidence for an association of some b6/f complexes with the reaction centers of Photosystem I and II in large PFu and EFs particles, respectively.  相似文献   

17.
We have studied the recovery of the photochemical activity of Photosystem I after the charge separation induced by a flash under conditions where the secondary donors are in the reduced form. The rate-limiting steps are on the donor side. The first step is completed within 400 mus. The second step is much slower (half time approximately equal to 1 ms) and corresponds to the transfer of electrons from plastoquinone. Under our conditions, only one intermediate is involved in electron transfer between the centers and the plastoquinone pool. Electron exchange between the Sytem I centers has been demonstrated.  相似文献   

18.
The chloroplast cytochrome b6-f complex, incorporated into phospholipid vesicles, shows proton translocation with an observed H+/e- ratio of approximately 2. The oxidation-reduction behavior of cytochrome b6 during electron transport from duroquinol to plastocyanin is affected by incorporation. The most obvious effect of incorporation is an increase in the duration of a steady-state level of cytochrome b6 that persists during electron transport. Reagents that decrease activity increase the duration of the steady state while reagents that stimulate activity decrease this time. Uncoupling conditions yield cytochrome kinetics similar to those in the unincorporated complex. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone and 5-n-undecyl-4,7-dioxobenzothiazole inhibited reduction of cytochrome b6 in the incorporated complex, but this apparent inhibition was due to a rapid oxidation of the cytochrome by these compounds.  相似文献   

19.
The role of photosystem I in the photooxidation-reduction reactionsof cytochrome b559 was elucidated by studying the effects ofelectron acceptors and inhibitors of photosystem I on reactionsof the cytochrome in spinach chloroplasts. We concluded thatthe cytochrome is photoreduced through photosystem I and, inthe presence of DCMU and ferrocyanide, is photooxidized by photosystemI. (Received December 20, 1972; )  相似文献   

20.
Radiolabeled N,N'-dicyclohexylcarbodiimide (DCCD) was bound selectively in a time- and concentration-dependent manner to cytochrome b6 of an enzymatically active cytochrome bf complex isolated from spinach chloroplasts. Maximum labeling of cytochrome b6 was observed with 30 nmol DCCD per nmol cytochrome b6 in the cytochrome bf complex incubated for 30-60 min at 12 degrees C. After incubation of the cytochrome bf complex with DCCD under these conditions, the rate of proton ejection in the complex reconstituted into liposomes was decreased approximately 65-70% when compared to controls; however, under these same conditions the rate of electron transfer through either the soluble bf complex or the complex reconstituted into liposomes was only decreased around 20%. These results suggest that the mechanism of proton translocation through the cytochrome bf complex of spinach chloroplasts is similar to that of the cytochrome bc1 complex from yeast mitochondria in which proton pumping but not electron transfer is also inhibited by DCCD (D. S. Beattie and A. Villalobo, 1982, J. Biol. Chem. 257, 14,745-14,752).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号