首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Functional and ultrastructural studies have indicated that the components of the photosynthetic apparatus of Rhodobacter sphaeroides are highly organized. This organization favors rapid electron transfer that is unimpeded by reactant diffusion. The light-harvesting complexes only partially surround the photochemical reaction center, which ensures an efficient shuttling of quinones between the photochemical reaction center and the bc1 complex.  相似文献   

2.
Photosynthetic organisms synthesize a diverse range of carotenoids. These pigments are important for the assembly, function and stability of photosynthetic pigment-protein complexes, and they are used to quench harmful radicals. The photosynthetic bacterium Rhodobacter sphaeroides was used as a model system to explore the origin of carotenoid diversity. Replacing the native 3-step phytoene desaturase (CrtI) with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway for the first time in Rb. sphaeroides. In Rb. sphaeroides, the completion of four desaturations to lycopene by the Erwinia CrtI appears to require the absence of CrtC and, in a crtC background, even the native 3-step enzyme can synthesize a significant amount (13%) of lycopene, in addition to the expected neurosporene. We suggest that the CrtC hydroxylase can intervene in the sequence of reactions catalyzed by phytoene desaturase. We investigated the properties of the lycopene-synthesizing strain of Rb. sphaeroides. In the LH2 light-harvesting complex, lycopene transfers absorbed light energy to the bacteriochlorophylls with an efficiency of 54%, which compares favourably with other LH2 complexes that contain carotenoids with 11 conjugated double bonds. Thus, lycopene can join the assembly pathway for photosynthetic complexes in Rb. sphaeroides, and can perform its role as an energy donor to bacteriochlorophylls.  相似文献   

3.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

4.
Surface-enhanced resonance Raman scattering (SERRS) spectra were obtained from carotenoids, in the all-trans configuration, located on the antenna complexes of Rhodobacter sphaeroides 2.4.1 membranes. Since resonance Raman (RR) spectra are barely detectable at the concentration that SERRS signals saturate, SERRS represents a very sensitive means of detecting pigments in biological systems. Prominent SERRS spectra of sphaeroidenone were detected in chromatophores (cytoplasmic side out) but not in spheroplast-derived vesicles (periplasmic side out), demonstrating that the carotenoid is asymmetrically located on the cytoplasmic side of the cell membrane. Comparison of peak frequencies from SERRS and RR spectral data suggests that the carotenoids are oriented into the membrane with the methoxy end of the isoprenoid chains located closest to the cytoplasmic side of the intracytoplasmic membrane. This work not only shows that SERRS spectroscopy can provide information on the location of a chromophore in a biological membrane but also for the first time demonstrates that SERRS data can be used to ascertain the orientation of a chromophore within the membrane. This observation greatly increases the potential of this technique for structural analysis of intact membranes at the molecular level.  相似文献   

5.
Hydrogen release by recombinant strains of Rhodobacter sphaeroides pRK puf DD13 without a peripheral light-harvesting antenna complex and pRK puf deltaLM1 which is able to synthesize both antenna complexes, both of which were grown in conditions of nitrogen limitation, has been studied. The velocity of hydrogen release depended on light intensity. At high cell concentration (0.91 g l(-1)) of pRK puf DD 13, velocity was maximal at 2270 W m(-2) and was equal to 144.7 ml l(-1) h(-1) that evidences to an opportunity to increase the volume velocity of hydrogen release by application of the strains with low content of pigments.  相似文献   

6.
Hydroxyneurosporene desaturase is involved in the carotenoid biosynthetic pathway of Rhodobacter species. The gene encoding this enzyme was expressed in Escherichia coli, purified, and biochemically characterized. The resulting protein contained an N-terminal six-histidine extension which derived from the cloning vector; this allowed for a one-step purification of the enzyme to homogeneity after solubilization with Nonidet P-40. The hydrogen acceptor in the C-3,4 desaturation reaction was molecular oxygen. NAD+, NADP+, and flavin adenine dinucleotide had no influence on enzymatic activity. Different acyclic 1-hydroxycarotenoids were tested as substrates. Very good conversion was achieved with 1-hydroxyneurosporene and 1-hydroxylycopene, whereas 1-hydroxy-gamma-carotene and 1,1'-dihydroxylycopene were much less effective. From 1'-hydroxy-3,4-didehydrolycopene only trace amounts of product were obtained, and 1-methoxyneurosporene was not converted by purified hydroxyneurosporene desaturase. A Km of 13.4 microM was determined for 1-hydroxyneurosporene.  相似文献   

7.
The nucleotide sequence of the 1794-bp fragment containing the crtD gene from Rhodobacter sphaeroides 2.4.1 encoding for methoxyneurosporene dehydrogenase has been determined. A 63% sequence identity was found when compared with the nucleotide sequence of the crtD gene from Rhodobacter capsulatus. A putative regulatory palindromic motif present in the crtD gene from R. capsulatus also exists in this gene from R. sphaeroides. The translated open reading frame of the crtD gene of R. sphaeroides has identified a polypeptide of 495 amino acids which shares a 56% sequence identity with the same CrtD protein of R. capsulatus. The N- and C-termini of these CrtD proteins present a high degree of similarity with the N- and C-termini of other carotenoid dehydrogenases including those encoded by crtI genes. This is in good agreement with the previously hypothesized homology between CrtI and CrtD proteins.  相似文献   

8.
The osmoregulated periplasmic glucans (OPGs) produced by Rhodobacter sphaeroides, a free-living organism, were isolated by trichloracetic acid treatment and gel permeation chromatography. Compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry and nuclear magnetic resonance. R. sphaeroides predominantly synthesizes a cyclic glucan containing 18 glucose residues that can be substituted by one to seven succinyl esters residues at the C6 position of some of the glucose residues, and by one or two acetyl residues. The glucans were subjected to a mild alkaline treatment in order to remove the succinyl and acetyl substituents, analyzed by MALDI mass spectrometry and purified by high-performance anion-exchange chromatography. Methylation analysis revealed that this glucan is linked by 17 1,2 glycosidic bonds and one 1,6 glycosidic bond. Homonuclear and (1)H/(13)C heteronuclear NMR experiments revealed the presence of a single alpha-1,6 glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The different anomeric proton signals allowed a complete sequence-specific assignment of the glucan. The structural characteristics of this glucan are very similar to the previously described OPGs of Ralstonia solanacearum and Xanthomonas campestris, except for its different size and the presence of substituents. Therefore, similar OPGs are synthesized by phytopathogenic as well as free-living bacteria, suggesting these compounds are intrinsic components of the Gram-negative bacterial envelope.  相似文献   

9.
Recent AFM data demonstrate that mature photosynthetic membranes of R. sphaeroides are composed of rows of dimeric RC-LH1-PufX complexes with some LH2 complexes 'sandwiched' between these rows of core complexes, and others in discrete LH2-only domains which might form the light-responsive complement of the LH2 antenna. The present work applies membrane fractionation, radiolabelling and LDS-PAGE techniques to investigate the response of R. sphaeroides to lowered light intensity. The kinetics underlying this adaptation to low light conditions were revealed by radiolabelling with the bacteriochlorophyll (bchl) biosynthetic precursor, delta-aminolevulinate, which allowed us to measure only the bchls synthesised after the light intensity shift. We show that (1) the increase in LH2 antenna size is mainly restricted to the mature ICM membrane fraction, and the antenna composition of the precursor upper pigmented band (UPB) membrane remains constant, (2) the precursor UPB membrane is enriched in bchl synthase, the terminal enzyme of the bchl biosynthetic pathway, and (3) the LH2 and the complexes of intermediate migration in LDS-PAGE exhibit completely different labelling kinetics. Thus, new photosynthetic complexes, mainly LH2, are synthesised and assembled at the membrane initiation UPB sites, where the LH2 rings pack between the rows of dimeric cores fostering new LH2-LH1 interactions. Mature membranes also assemble new LH2 rings, but in this case the 'sandwich' regions between the rows of core dimers are already fully occupied and the bulk antenna pool is the favoured location for these new LH2 complexes.  相似文献   

10.
Larson JW  Wraight CA 《Biochemistry》2000,39(48):14822-14830
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction.  相似文献   

11.
In the bacterium R. sphaeroides, the polypeptide PufX is indispensable for photosynthetic growth. Its deletion is known to have important consequences on the organization of the photosynthetic apparatus. In the wild-type strain, complexes between the reaction center (RC) and the antenna (light-harvesting complex 1 (LH1)) are associated in dimers, and LH1 does not fully encircle the RC. In the absence of PufX, the complexes become monomeric, and the LH1 ring closes around the RC. We analyzed the functional consequences of PufX deletion. Some effects can be ascribed to the monomerization of the RC.LH1 complexes: the number of RCs that share a common antenna for excitation transfer or a common quinone pool become smaller. We examined the kinetic effects of the closed LH1 ring on quinone turnover: diffusion across LH1 entails a delay of approximately 1 ms, and the barrier appears to be located directly against the quinone-binding (secondary quinone acceptor (Q(B))) pocket. The diffusion of ubiquinol from the RC to the cytochrome bc1 complex is approximately 2-fold slower in the mutant, suggesting an increased distance between the two complexes. The properties of the Q(B) pocket (binding of inhibitors, stabilization of Q(B-), and rate of Q(B)-H2 formation) appear to be modified in the mutant. Another specificity of PufX- is the accumulation of closed centers in the Q(A-) (where Q(A) is the primary quinone acceptor) state as the secondary acceptor pool becomes reduced, which is probably the origin of photosynthetic incompetence. We suggest that this is related to the Q(B) pocket alterations. The malfunction of the reaction center is probably due to a faulty association with LH1 that is prevented in the PufX-containing structure.  相似文献   

12.
The Rhodobacter sphaeroides intracytoplasmic membrane (ICM) is an inducible membrane that is dedicated to the major events of bacterial photosynthesis, including harvesting light energy, separating primary charges, and transporting electrons. In this study, multichromatographic methods coupled with Fourier transform ion cyclotron resonance mass spectrometry, combined with subcellular fractionation, was used to test the hypothesis that the photosynthetic membrane of R. sphaeroides 2.4.1 contains a significant number of heretofore unidentified proteins in addition to the integral membrane pigment-protein complexes, including light-harvesting complexes 1 and 2, the photochemical reaction center, and the cytochrome bc(1) complex described previously. Purified ICM vesicles are shown to be enriched in several abundant, newly identified membrane proteins, including a protein of unknown function (AffyChip designation RSP1760) and a possible alkane hydroxylase (RSP1467). When the genes encoding these proteins are mutated, specific photosynthetic phenotypes are noted, illustrating the potential new insights into solar energy utilization to be gained by this proteomic blueprint of the ICM. In addition, proteins necessary for other cellular functions, such as ATP synthesis, respiration, solute transport, protein translocation, and other physiological processes, were also identified to be in association with the ICM. This study is the first to provide a more global view of the protein composition of a photosynthetic membrane from any source. This protein blueprint also provides insights into potential mechanisms for the assembly of the pigment-protein complexes of the photosynthetic apparatus, the formation of the lipid bilayer that houses these integral membrane proteins, and the possible functional interactions of ICM proteins with activities that reside in domains outside this specialized bioenergetic membrane.  相似文献   

13.
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.  相似文献   

14.
A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed.  相似文献   

15.
《BBA》1987,892(3):275-283
Electron-transfer reactions and triplet decay rates have been studied at pressures up to 300 MPa. In reaction centers from Rhodobacter sphaeroides R-26, high pressure hastened the electron transfers from both the primary and secondary quinones (QA and QB) to the primary electron donor bacteriochlorophyll, P. Motion of QA between two sites, one nearer to P and the other nearer to QB, could account for these pressure effects. In reaction centers from Rhodopseudomonas viridis, charge recombination was slowed by high pressure. Decay rates were also studied for the triplet state, PR. In Rb. sphaeroides R-26 with QA reduced with Na2S2O4, the decay was hastened by pressure. This could be explained if PR decays through a charge-transfer triplet state, or if the decay kinetics of PR are sensitive to the distance between P and QA. In Rps. viridis reaction centers, and in Rb. sphaeroides reaction centers that were depleted of QA, the lifetime of PR was not altered by pressure.  相似文献   

16.
The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0–4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·104 s?1) and yield (F v/F max ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·104 s?1). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand.  相似文献   

17.
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.  相似文献   

18.
Flash-induced kinetics of the membrane potential increase related to electron transfer within the cytochrome (cyt) b/c1 complex (Phase III) and that of cyt c1+c2 reduction have been measured as a function of myxothiazol concentration in isolated chromatophores and whole cells of Rhodobacter sphaeroides. Upon addition of nonsaturating concentrations of myxothiazol, kinetics of Phase III display two phases, Phase IIIa and Phase IIIb. The amplitude of Phase IIIa, completed in about 10 ms, is proportional to the fraction of non-inhibited cyt b/c1 complexes, while its half-time is independent of the myxothiazol concentration. A fast cyt c1+c2 reduction phase is correlated to Phase IIIa. These experiments demonstrate that, in a range of time of several ms, diffusion of cyt c2 is restricted to domains formed by a supercomplex including two reaction centers (RCs) and a single cyt b/c1 complex, as proposed by Joliot et al. (Biochim Biophys Acta 975: 336–345, 1989). Phase IIIb, completed in about 100 ms, shows that positive charges or inhibitor molecules are exchanged between supercomplexes in this range of time. These exchanges occur within domains including 2 to 3 supercomplexes, i.e. in membrane domains smaller than a single chromatophore. These conclusions apply to both isolated chromatophores and whole cells.Abbreviations cyt cytochrome - MOPS 3-(N-morpholino)propane sulfonic acid - PMS phenazine methosulfate - P primary donor - Rb. Rhodobacter - RC reaction center  相似文献   

19.
Abresch  E.C.  Paddock  M.L.  Stowell  M.H.B.  McPhillips  T.M.  Axelrod  H.L.  Soltis  S.M.  Rees  D.C.  Okamura  M.Y.  Feher  G. 《Photosynthesis research》1998,55(2-3):119-125
Structural features that have important implications for the fundamental process of transmembrane proton transfer are examined in the recently published high resolution atomic structures of the reaction center (RC) from Rhodobacter sphaeroides in the dark adapted state (DQAQB) and the charged separated state (D+QAQB ); the latter is the active state for proton transfer to the semiquinone. The structures have been determined at 2.2 Å and 2.6 Å resolution, respectively, as reported by Stowell et al. (1997) [Science 276: 812–816]. Three possible proton transfer pathways (P1, P2, P3) consisting of water molecules and/or protonatable residues were identified which connect the QB binding region with the cytoplasmic exposed surface at Asp H224 & Asp M240 (P1), Tyr M3 (P2) and Asp M17 (P3). All three represent possible pathways for proton transfer into the RC. P1 contains an uninterrupted chain of water molecules. This path could, in addition, facilitate the exchange of quinone for quinol during the photocycle by allowing water to move into and out of the binding pocket. Located near these pathways is a cluster of electrostatically interacting acid residues (Asp-L213, Glu-H173, Asp-M17, Asp H124, Asp-L210 and Asp H170) each being within 4.5 Å of a neighboring carboxylic acid or a bridging water molecule. This cluster could serve as an internal proton reservoir facilitating fast protonation of QB that could occur at a rate greater than that attainable by proton uptake from solution.  相似文献   

20.
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号