首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we identified and characterized mitochondrial alcohol dehydrogenase 3 from the thermotolerant methylotrophic yeast Hansenula polymorpha (HpADH3). The amino acid sequence of HpADH3 shares over 70% of its identity with the alcohol dehydrogenases of other yeasts and exhibits the highest similarity of 91% with the alcohol dehydrogenase 1 of H. polymorpha. However, unlike the cytosolic HpADH1, HpADH3 appears to be a mitochondrial enzyme, as a mitochondrial targeting extension exists at its N terminus. The recombinant HpADH3 overexpressed in Escherichia coli showed similar catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The HpADH3 displayed substrate specificities with clear preferences for medium chain length primary alcohols and acetaldehyde for an oxidation reaction and a reduction reaction, respectively. Although the H. polymorpha ADH3 gene was induced by ethanol in the culture medium, both an ADH isozyme pattern analysis and an ADH activity assay indicated that HpADH3 is not the major ADH in H. polymorpha DL-1. Moreover, HpADH3 deletion did not affect the cell growth on different carbon sources. However, when the HpADH3 mutant was complemented by an HpADH3 expression cassette fused to a strong constitutive promoter, the resulting strain produced a significantly increased amount of ethanol compared to the wild-type strain in a glucose medium. In contrast, in a xylose medium, the ethanol production was dramatically reduced in an HpADH3 overproduction strain compared to that in the wild-type strain. Taken together, our results suggest that the expression of HpADH3 would be an ideal engineering target to develop H. polymorpha as a substrate specific bioethanol production strain.  相似文献   

2.
The ability of baker’s yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.  相似文献   

3.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

4.
A new method for the selection of Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability to ferment xylose to ethanol was developed. The method is based on the ability of P. stipitis and H. polymorpha colonies to grow and produce ethanol on agar plates with xylose as the sole carbon and energy source. Secreted ethanol, in contrast to xylose, supports growth of cells of the indicator xylose-negative strains (the wild-type strain of Saccharomyces cerevisiae or Δxyl1 mutant of H. polymorpha) mixed with agar medium. The size of the tester culture-growth zone around xylose-grown colonies appeared to be dependent on the amount of secreted ethanol. Mutants with altered (decreased or elevated) ethanol production in xylose medium have been isolated using this method. The mutants exhibited pleiotropic alterations in enzymatic activities of the intermediary xylose metabolism.  相似文献   

5.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

6.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

7.
Summary Experiments were performed to investigate growth, ethanol and glycerol production by wild-type strains (RHO) and respiratory-deficient (rho) mutants of Saccharomyces cerevisiae. Furthermore protoplasts were fused in order to enhance the fermentation capacity of a flocculent strain. At high substrate conditions, 150 g/l of saccharose, there is no difference in cell growth. However, at a glucose concentration of 10–20 g/l the mutants grow much slower. After 3 days of incubation at 28° C in a complete medium the viability of the two strains is the same. In minimal medium on the other hand the number of viable cells of the mutant is 100-fold reduced. All mutants tested showed a higher specific activity of alcohol dehydrogenase (ADH I) and an enhanced production of glycerol compared with the wild-type strain. By protoplast fusion a modified flocculent strain was obtained with higher specific activity of ADH I and a reduced biosynthesis of glycerol. However, the yields of ethanol (75–78%) are about the same for the wild-type strain and the rho mutants under aerobic conditions in absence of catabolite repression.  相似文献   

8.
Efficient conversion of hexose and pentose (glucose and xylose) by a single strain is a very important factor for the production of industrially important metabolites using lignocellulose as the substrate. The kinetics of growth and polyol production by Debaryomyces nepalensis NCYC 3413 was studied under single and mixed substrate conditions. In the presence of glucose, the strain produced ethanol (35.8 ± 2.3 g/l), glycerol (9.0 ± 0.2 g/l), and arabitol (6.3 ± 0.2 g/l). In the presence of xylose, the strain produced xylitol (38 ± 1.8 g/l) and glycerol (18 ± 1.0 g/l) as major metabolites. Diauxic growth was observed when the strain was grown with different combinations of glucose/xylose, and glucose was the preferred substrate. The presence of glucose enhanced the conversion of xylose to xylitol. By feeding a mixture of glucose at 100 g/l and xylose at 100 g/l, it was found that the strain produced a maximum of 72 ± 3 g/l of xylitol. A study of important enzymes involved in the synthesis of xylitol (xylose reductase (XR) and xylitol dehydrogenase (XDH)), glycerol (glycerol-3-phosphate dehydrogenase (G3PDH)) and ethanol (alcohol dehydrogenase (ADH)) in cells grown in the presence of glucose and xylose revealed high specific activity of G3PDH and ADH in cells grown in the presence of glucose, whereas high specific activity of XR, XDH, and G3PDH was observed in cells grown in the presence of xylose. To our knowledge, this is the first study to elaborate the glucose and xylose metabolic pathway in this yeast strain.  相似文献   

9.
Mutants of the methylotrophic yeast Hansenula polymorpha deficient in NAD-dependent formaldehyde or formate dehydrogenases have been isolated. They were more sensitive for exogenous methanol but retained the ability for methylotrophic growth. In the medium with methanol the growth yields of the mutant 356–83 deficient in formaldehyde dehydrogenase and of the wild-type strain were identical (0.34 g cells/g methanol) under chemostat cultivation. These results indicate that enzymes of direct formaldehyde oxidation are not indispensable for methylotrophic growth. At the same time inhibition of tricarboxylic acid cycle has resulted in suppression of growth in the media with multicarbon nonfermentable substrates such as glycerol, succinate, ethanol and dihydroxyacetone as well as with methanol, but not with glucose. In the experiments with the wild-type strain H. polymorpha it has been shown that citrate and dihydroxyacetone inhibit the radioactivity incorporation from 14C-methanol into CO2. All obtained data indicate that for the dissimilation of methanol and the supplying of energy for methylotrophic growth, the functioning of tricarboxylic acid cycle reactions as oppossed to those of direct formaldehyde oxidation is essential.  相似文献   

10.
The ura3 gene of Hansenula polymorpha was cloned, sequenced and used to generate a ura3 mutant from the wild-type strain of this yeast via integrative mutagenesis. The Tn5 neomycin-resistance marker (neo) under control of the ADH1 promoter from Saccharomyces cerevisiae served as a transformation marker. The results show that gene replacement can be achieved in H. polymorpha, a yeast with a high level of non-homologous integration. Correspondence to: C. P. Hollenberg  相似文献   

11.
In this study, the glucose 6-phosphate dehydrogenase gene (XOO2314) was inactivated in order to modulate the intracellular glucose 6-phosphate, and its effects on xanthan production in a wild-type strain of Xanthomonas oryzae were evaluated. The intracellular glucose 6-phosphate was increased from 17.6 to 99.4 μmol g−1 (dry cell weight) in the gene-disrupted mutant strain. The concomitant increase in the glucose 6-phosphate was accompanied by an increase in xanthan production of up to 2.23 g l−1 (culture medium). However, in defined medium supplemented with 0.4% glucose, the growth rate of the mutant strain was reduced to 52.9% of the wild-type level. Subsequently, when a family B ATP-dependent phosphofructokinase from Escherichia coli was overexpressed in the mutant strain, the growth rate was increased to 142.9%, whereas the yields of xanthan per mole of glucose remained approximately the same.  相似文献   

12.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

13.
Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1–2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.  相似文献   

14.
Summary A partial alcohol dehydrogenase, ADH I, deficient mutant, GRF 18-2 of S. cerevisiae has been isolated. The mutant is resistant to allyl alcohol and the spec. activity of ADH I is 15-fold reduced in the mutant. In a batch fermentation the mutant overproduces glycerol. The production is enhanced 6–7 fold compared with the wildtype strain and it amounts to about 40 per cent of the ethanol produced. The yield of ethanol and glycerol is 56 and 24 per cent respectively. Another mutant possibly defect in the gene for ADH II has a reduced capacity to oxidize ethanol.  相似文献   

15.
Summary A selection by glucosamine for mutants of Hansenula polymorpha insensitive to glucose repression of methanol assimilation is described. Constitutive synthesis of enzymes is established in standard batch cultures of glucosegrown cells. Upon prolonged glucose metabolism the phenotype is masked by catabolite inactivation and degradation of enzymes. Addition of the substrate methanol remarkably improves constitutive synthesis by preventing catabolite inactivation and delaying degradation. Regular peroxisomes of reduced number are formed in mutant cells under repressed conditions. No constitutive synthesis is detectable using ethanol as a carbon source. In addition, this alcohol is detrimental to growth of the mutants, indicating that H. polymorpha is constrained to repress synthesis of enzymes involved in the C1-metabolism when ethanol is present as a substrate.  相似文献   

16.
The biochemical mechanisms for growth tolerance to a 100% CO headspace in cultures, and butanol plus ethanol production from CO by Butyribacterium methylotrophicum were assessed in the wild-type and CO-adapted strains. The CO-adapted strain grew on glucose or CO under a 100% CO headspace, whereas, the growth of the wild-type strain was severely inhibited by 100% CO. The CO-adapted strain, unlike the wild-type, also produced butyrate, from either pyruvate or CO. The CO-adapted strain was a metabolic mutant having higher levels of ferredoxin–NAD oxidoreductase activity, which was not inhibited by NADH. Consequently, only the CO-adapted strain can grow on CO because CO oxidation generates reduced ferredoxin which, via the mutated ferredoxin–NAD reductase activity, forms reduced NADH required for catabolism. When the CO-adapted strain was grown at pH 6.0 it produced butanol (0.33 g/l) and ethanol (0.5 g/l) from CO and the cells contained the following NAD-linked enzyme activities (μmol min−1 mg protein−1): butyraldehyde dehydrogenase (227), butanol dehydrogenase (686), acetaldehyde dehydrogenase (82) and ethanol dehydrogenase (129). Received: 15 September 1998 / Received revision: 12 February 1999 / Accepted: 19 February 1999  相似文献   

17.
Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD+, while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.  相似文献   

18.
Summary Many of the potential technical applications of alcohol oxidase (MOX; EC 1.1.3.13) are limited by the presence of high activities of catalase in the enzyme preparations. In order to circumvent laborious and costly purification or inactivation procedures, the induction of MOX in a catalase-negative mutant of Hansenula polymorpha has been studied. Emphasis was laid on the induction of activities of MOX and the dissimilatory enzymes in continuous cultures grown on various mixtures of formate/glucose and formaldehyde/glucose. In continuous cultures of the catalase-negative mutant grown on these mixtures, MOX can be induced efficiently. To obtain a stable and productive process, the ratio of the substrates is of critical importance. The optimal ratios of the mixtures for the catalase-negative strain for formate/glucose and formaldehyde/glucose were 3:1 and 1–2:1, respectively. Under identical cultivation conditions the wild-type strain showed similar induction patterns for MOX and the dissimilatory enzymes formaldehyde dehydrogenase (FaDH) and formate dehydrogenase (FoDH). The MOX levels in the catalase-negative strain were approx. 50% of those in the wild-type strain.  相似文献   

19.
Several alcohol dehydrogenase (ADH)-related genes have been identified as enzymes for reducing levels of toxic compounds, such as, furfural and/or 5-hydroxymethylfurfural (5-HMF), in hydrolysates of pretreated lignocelluloses. To date, overexpression of these ADH genes in yeast cells have aided ethanol production from glucose or glucose/xylose mixture in the presence of furfural or 5-HMF. However, the effects of these ADH isozymes on ethanol production from xylose as a sole carbon source remain uncertain. We showed that overexpression of mutant NADH-dependent ADH1 derived from TMB3000 strain in the recombinant Saccharomyces cerevisiae, into which xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway of Pichia stipitis has been introduced, improved ethanol production from xylose as a sole carbon source in the presence of 5-HMF. Enhanced furan-reducing activity is able to regenerate NAD+ to relieve redox imbalance, resulting in increased ethanol yield arising from decreased xylitol accumulation. In addition, we found that overexpression of wild-type ADH1 prevented the more severe inhibitory effects of furfural in xylose fermentation as well as overexpression of TMB3000-derived mutant. After 120 h of fermentation, the recombinant strains overexpressing wild-type and mutant ADH1 completely consumed 50 g/L xylose in the presence of 40 mM furfural and most efficiently produced ethanol (15.70 g/L and 15.24 g/L) when compared with any other test conditions. This is the first report describing the improvement of ethanol production from xylose as the sole carbon source in the presence of furan derivatives with xylose-utilizing recombinant yeast strains via the overexpression of ADH-related genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号