首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (DOX) is an anticancer drug used for the treatment of solid tumors. The ability of DOX to treat cancer is not specific to cancer cells; some of the cells that are normal may also become targets of DOX, thereby altering the normal cellular functions and eventual cell loss. DOX effects have been studied in detail in heart because of its ability to cause cardiomyopathy. The exact mechanism of DOX-induced cardiomyopathy is not completely understood. One of organs that can be affected by DOX is thymus. DOX treatment leads to degeneration of thymus; however, since thymus undergoes age-dependent degeneration, researchers have understudied the effect of DOX on thymus. In the present investigation, we studied the effects of DOX on thymus, an organ that is important for the T-cell maturation. DOX treatment led to loss of cortical cells, decrease lymphopoiesis and increased the number of Hassells corpuscles, a marker of thymus aging. Proteomics analysis led to identification of a number of thymic proteins whose expression are altered by in vivo DOX treatment. Taken together, these results are consistent with the notion that DOX-treatment leads to thymic senescence.  相似文献   

2.
3.
Autophagy is a process of cellular degradation, and its dysfunction elicits many pathological symptoms. However, the contribution of autophagy to kidney glomerular function has not been fully clarified. We previously reported that LC3, a promising executor of autophagy, played an important role in recovery from podocyte damage in an experimental nephrosis model (Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y. FASEB J 17: 1165-1167, 2003). γ-Aminobutyric acid A receptor-associated protein (GABARAP), has recently been characterized as another homolog of LC3, although its precise role in autophagy remains unclear. We recently generated green fluorescent protein (GFP)-GABARAP transgenic mice, in which GFP-GABARAP is abundantly expressed in glomerular podocytes. We found that the transgenic mice showed no obvious phenotype, and podocytes isolated from these mice manifested autophagic activity almost equivalent to that of wild-type mice when measured in vitro. Surprisingly, a single injection of doxorubicin caused a greater increase in proteinuria and sclerotic glomeruli in transgenic mice compared with wild-type mice. Under these conditions, neither GFP-GABARAP nor endogenous GABARAP appeared to be recruited to autophagosomes, and both remained in the cytosol. Moreover, the cytosolic GFP-GABARAP was significantly colocalized with p62 to form aggregates. These results indicate that the GFP-GABARAP/p62 complex is responsible for impairment of glomerular function and that it retards recovery from the effects of doxorubicin.  相似文献   

4.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

5.
Proper functioning of the ovary is critical to maintain fertility and overall health, and ovarian function depends on the maintenance and normal development of ovarian follicles. This review presents evidence about the potential impact of oxidative stress on the well-being of primordial, growing and preovulatory follicles, as well as oocytes and early embryos, examining cell types and molecular targets. Limited data from genetically modified mouse models suggest that several antioxidant enzymes that protect cells from reactive oxygen species (ROS) may play important roles in follicular development and/or survival. Exposures to agents known to cause oxidative stress, such as gamma irradiation, chemotherapeutic drugs, or polycyclic aromatic hydrocarbons, induce rapid primordial follicle loss; however, the mechanistic role of ROS has received limited attention. In contrast, ROS may play an important role in the initiation of apoptosis in antral follicles. Depletion of glutathione leads to atresia of antral follicles in vivo and apoptosis of granulosa cells in cultured antral follicles. Chemicals, such as cyclophosphamide, dimethylbenzanthracene, and methoxychlor, increase proapoptotic signals, preceded by increased ROS and signs of oxidative stress, and cotreatment with antioxidants is protective. In oocytes, glutathione levels change rapidly during progression of meiosis and early embryonic development, and high oocyte glutathione at the time of fertilization is required for male pronucleus formation and for embryonic development to the blastocyst stage. Because current evidence suggests that oxidative stress can have significant negative impacts on female fertility and gamete health, dietary or pharmacological intervention may prove to be effective strategies to protect female fertility.  相似文献   

6.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

7.
5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2′-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.  相似文献   

8.
9.
Fosinopril, an angiotensin-converting enzyme inhibitor, is known to attenuate cardiomyopathy induced by doxorubicin (DOX); however, the mechanisms of this cardioprotection are not fully elucidated yet. In the present study, experimental cardiomyopathy was induced in rats by administration of DOX with or without co-treatment with fosinopril. Fosinopril was utilized on day 1 or 14 of the treatment with DOX to compare efficacies of early versus late co-treatments. We observed that fosinopril attenuated changes induced by DOX (e.g., less increased heart and left ventricular weights, diminished lung congestion and ascites, attenuated LVEDP and LVSP, and less decreased +dP/dt and ?dP/dt). Further, fosinopril diminished the levels of markers of cardiac toxicity (i.e., plasma levels and activities of cardiac enzymes and proteins AST, LDH, CPK, cTnI, and BNP). Fosinopril also prevented DOX-induced decreases in Ca2+ uptake and restored activity of Ca2+-stimulated ATPase in left ventricular sarcoplasmic reticulum. We next tested whether the improved Ca2+ transport activity in sarcoplasmic reticulum was due to modulation of SERCA2 and phospholamban expressions by fosinopril. Fosinopril attenuated the decrease in SERCA2 and phospholamban expressions caused by DOX. In conclusion, cardioprotective effects of fosinopril in the DOX-induced cardiomyopathy appear to be due to its ability to prevent remodeling of the cardiac sarcoplasmic reticulum membrane.  相似文献   

10.
目的:探究miR-21是否介导姜黄素(Cur)预处理抗多柔比星(DOX)心肌毒性作用。方法:体外分离培养大鼠原代心肌细胞,用DOX处理24 h建立心肌毒性离体模型。姜黄素于DOX处理前12 h加入心肌细胞培养液中。实验分组如下:Control组;Cur组;DOX组;Cur+DOX组;miR-21i(miR-21抑制剂)+Cur+DOX组;miR-21i+DOX组。DOX处理24 h后检测miR-21表达情况、细胞活力、凋亡和氧化应激相关指标。结果:与DOX组相比,姜黄素预处理可呈剂量依赖性地提高DOX处理后心肌细胞活力,且浓度为5μM时效果最佳。此外,姜黄素预处理可以明显提高Bcl-2和miR-21表达,降低心肌Bax和cleaved Caspase-3表达、凋亡率以及心肌细胞活性氧(ROS)产量和丙二醛(MDA)含量。而用miR-21i下调miR-21表达可明显削弱姜黄素预处理对DOX心肌损伤的上述保护作用(均P0.05)。结论:姜黄素预处理可通过上调miR-21表达,缓解心肌凋亡和氧化应激损伤,进而缓解DOX心肌毒性。  相似文献   

11.
Doxorubicin (DOX) is a powerful anthracycline antibiotic agent which is widely used to treat various types of cancers. Despite efficacy, it displays severe cardiotoxic side effects. Discovery of novel and effective protective agents against DOX-induced cardiotoxicity has been a subject of great interest. Herein, we report the synthesis of two series of analogues of Isosteviol (ISV) 1 with modifications at C-16, C-19 positions as the first series and at C-15, C-16 positions as the other series. Interestingly second series analogues have shown a potential protective effect against DOX-induced cardiotoxicity in zebrafish embryos in vivo. Further, we have demonstrated that the synthesized new analogues of ISV, prevented the morphological distortions caused due to DOX cardiotoxicity in zebrafish heart and the associated cardiac impairments.  相似文献   

12.

Background  

The pharmacologic modulatory effects of the antibiotic, tunicamycin (TM), on multidrug-resistant human UWOV2 ovarian cancer cells are reported. The UWOV2 cell line was derived from a cystadenocarcinoma in a patient refractory to combination chemotherapy with actinomycin D, vincristine (VCR), cis-diaminedichloroplatinum (II) (CDDP) and doxorubicin (DXR). In an attempt to explain drug resistance in this cell line, we examined the effects of TM on their sensitivity to various anticancer drugs, the uptake, efflux and retention of [3H]VCR, and their ability to bind [14C]DXR and [3H]azidopine (AZD), a photoaffinity label of the multidrug transporter, P-glycoprotein (Pgp).  相似文献   

13.
目的:观察松果菊苷(ECH)能否减轻多柔比星(DOX)心脏毒性并初步阐明其作用机制。方法:通过单次腹腔注射大剂量多柔比星(15 mg/kg)建立急性心脏毒性小鼠模型,DOX处理后每日通过腹腔注射ECH(50 mg/kg/day)。实验分组如下:正常组(Control组);单纯松果菊苷处理组(ECH组);多柔比星处理组(DOX组);多柔比星+松果菊苷处理组(DOX+ECH组)。给药5天后检测左心室功能、心肌组织病理改变、氧化应激和心肌凋亡情况。结果:与Control组相比,DOX组小鼠心脏收缩和舒张功能明显减弱,心肌细胞出现空泡变性,心肌MDA含量、凋亡率以及促凋亡蛋白Bax和cleaved Caspase-3表达明显增加,而抑制凋亡蛋白Bcl-2表达量、SOD与GSH-Px活性明显下降。与DOX组相比,松果菊苷能明显改善心脏功能,缓解心肌空泡变性,降低MDA含量、凋亡率以及Bax和cleaved Caspase-3表达量,而提高Bcl-2表达量、SOD与GSH-Px活性(均P 0.05)。结论:松果菊苷可以通过抑制心肌组织氧化应激损伤和凋亡缓解多柔比星诱导的急性心脏毒性。  相似文献   

14.
Effects of intraperitoneal injections of sodium selenite (2.0 and 4.0 mg/kg body weight) to normally cycling female albino Wistar rats daily for 30 days, and of single injection either during proestrous or oestrous and at each stage of the 4-day oestrous cycle were determined on oestrous cyclicity, ovarian follicles, ovulation, implantation and pregnancy outcome on day 14 of gestation. Administration of selenite for 30 days had no effect on the duration of first two oestrous cycles but afterwards the rats remained at the dioestrus stage. Their ovaries developed cystic follicles. Selenite treatments during the oestrous cycle preceding mating affects the implantation and pregnancy outcome in a dose-related manner. Its single dose containing 2.0 mg/kg body weight administered either at proestrous or oestrous, though had no effect on different reproductive parameters investigated in this study but its daily dose during the 4 day oestrous cycle reduced the number of corpora lutea and implantations as compared to saline injected control female rats. Similar effects of a single dose of selenite (4.0 mg/kg body weight) when injected at proestrous were recorded. Higher dose of selenite at oestrous or throughout the cycle decreased the number of implantations, but in addition, also increased the resorption rate/litter on day 14 of gestation. The present studies clearly show that high selenium levels in the body during the oestrous cycle preceding mating affects the number of ovulations, implantations and live embryos depending upon its dose and stage of administration.  相似文献   

15.
16.
17.
用RT-PCR法探讨甘肃黄芪对阿霉素(DOX)心肌病大鼠模型心肌组织中血管紧张素转换酶2(ACE2)mR-NA、血管紧张素转换酶(ACE)mRNA的表达的影响;并用光镜及透射电镜观察其心肌病理变化。结果显示,DOX组大鼠心肌组织中ACE2 mRNA和ACE mRNA表达均较正常对照组大鼠增高(ACE2:0.94±0.27 vs 0.48±0.21,P=0.001;ACE:3.73±0.59 vs 1.37±0.66,P=0.006);黄芪 DOX组大鼠心肌组织中ACE2 mRNA和ACE mRNA的表达均比DOX组降低(ACE2:0.64±0.23 vs 0.94±0.27,P=0.007;ACE:2.21±0.71 vs 3.73±0.09,P=0.0012)。说明DOX诱导心肌病变大鼠心肌组织中ACE2 mRNA、ACE mRNA表达水平均显著高于正常大鼠;光镜下显示黄芪 DOX组心肌细胞损害程度较DOX组轻;电镜下可见黄芪 DOX组可见心肌细胞核肿胀、线粒体肿胀,肌质中肌丝溶解、中断,但上述变化较DOX组少见。甘肃黄芪对DOX诱导的心肌损害大鼠具有心脏保护作用。  相似文献   

18.
Doxorubicin (DOX), a common antibiotic used to treat a variety of tumors, has several substantial adverse effects that limit its clinical use. As a result, finding effective protective agents to combat DOX-induced organ damage is a necessity. The current study was set to delineate the hepatoprotective role of omega‐3 fatty acids (ω-3FA) against DOX-mediated acute liver damage in rats and the underlined mechanism of GSK-3β inhibition. Five groups of rats were orally received either saline (groups 1 & 2) or ω-3FA (25, 50 and 100 mg/kg/day; groups 3, 4 & 5, respectively) for 28 consecutive days. Single DOX intraperitoneal injection (20 mg/kg) was used to induce hepatic toxicity in all groups except group 1 (negative control). Blood samples and liver tissues were collected 48-hr after injection. Our results revealed that pre-administration of ω-3FA (25, 50 and 100 mg/kg) to DOX-induced hepatic injured rats showed a significant reduction in serum hepatic injury biomarkers (ALT, AST, total and direct bilirubin) as well as hepatic contents of MDA, GSH, Nrf2 and HO-1. Additionally, hepatic PI3K, pAkt and GSK-3β have been restored significantly in a dose-dependent manner. Furthermore, all the hepatic histopathological features have been retained upon ω-3FA treatment together with the immunostaining intensity of tumor necrosis factor-α and caspase-3. These results suggest that ω-3FA have shown a marked activation of the Nrf2/HO-1 signaling pathway and modulation of the PI3K/pAkt/GSK-3β axis against DOX-induced hepatotoxicity.  相似文献   

19.
摘要 目的:本研究旨在探究FNDC5(Irisin)是否通过激活KLF4而抑制BNIP3介导的线粒体过度自噬,保护线粒体功能及降低纤维化蛋白的表达,明确其在DOX导致的心肌细胞毒性中的保护作用机制。方法:将分离的心肌成纤维细胞随机进行如下分组:对照组(CON)、FNDC5处理组(FNDC5)、DOX损伤组(DOX)、FNDC5保护组(DOX-FNDC5)、DOX+Scramble siRNA损伤组(DOX-Scramble siRNA)、FNDC5+Scramble siRNA保护组(DOX-FNDC5-Scramble siRNA)、DOX+KLF4 siRNA组(DOX-KLF4 siRNA)、DOX+FNDC5+KLF4 siRNA组(DOX-FNDC5-KLF4 siRNA),并检测ROS生成量、Western Blot检测线粒体功能及心肌成纤维细胞纤维化标志蛋白的表达等试验方法,观察FNDC5处理对DOX诱导的心肌细胞毒性的作用机制。结果:体外研究表明,与CON组细胞相比,DOX处理后可显著抑制ATP生成,而细胞凋亡率显著增加、同时线粒体自噬过度激活(BNIP3、Atg5及LC3的蛋白表达量明显增加)、细胞纤维化标志蛋白(Collagen I、α-SMA)的表达量显著增加,而FNDC5处理后可显著逆转DOX诱导的心肌细胞损伤。进一步的研究证实,FNDC5通过激活KLF4而抑制BNIP3介导的线粒体自噬,保护线粒体功能及降低纤维化。然而,FNDC5对BNIP3介导的线粒体自噬的抑制作用可被KLF4 siRNA部分抵消,细胞纤维化蛋白表达增加。结论:FNDC5通过激活KLF4信号而抑制BNIP3介导的线粒体过度自噬,保护线粒体功能及降低纤维化蛋白的表达,进而缓解DOX导致的心肌细胞毒性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号