首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.  相似文献   

2.
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.Almost all cells in multicellular organisms are surrounded by a three-dimensional organized meshwork of macromolecules that constitute the extracellular matrix (ECM). The ECM is a dynamic structure that is generated and constantly remodeled by cells that secrete and manipulate its components into a precise configuration. It functions as a structural framework that provides cells with positional and environmental information, but also forms specialized structures such as cartilage, tendons, basement membranes (BM), bone, and teeth. In addition to its structural properties, the ECM acts as a signaling platform that regulates a large number of cellular functions. It is capable of binding growth factors, chemokines, and cytokines thereby modulating their bioavailability and activity. On the other hand, the ECM is recognized by multiple cell surface receptors that transmit information from the extracellular environment by propagating intracellular signals (for a review, see Hynes 2009).The major cell surface receptors that recognize and assemble the ECM are integrins. Integrins are heterodimeric transmembrane proteins composed of α and β subunits. Eighteen α subunits and eight β subunits can assemble in 24 different combinations with overlapping substrate specificity and cell-type-specific expression patterns (Hynes 2002; Humphries et al. 2006). This, together with the ability of different heterodimers to assemble specific intracellular signaling complexes, provides multiple layers of signaling specificity to these receptors. Conversely, the integrin expression profile of a given cell type determines which ECM components it can bind. Signals arising from integrins regulate virtually all aspects of cell behavior, including cell migration, survival, cell cycle progression, and differentiation.Genetics has proven to be a powerful tool to dissect the functions of ECM–cell interactions in complex organisms. To date, all of the integrin subunits and their major ligands have been deleted in mice. Given the large variety of cellular processes regulated by adhesion signaling, it is not surprising that a significant subset of these proteins has proven to be essential for embryonic development and/or tissue maintenance. However, in addition to underlining the importance of cell-ECM interactions in development, genetic studies also revealed critical roles for tissue- and cell-type-specific modes of adhesion signaling and provided important insights into human disease.  相似文献   

3.
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.  相似文献   

4.
Myocardial development is regulated by an elegantly choreographed ensemble of signaling events mediated by a multitude of intermediates that take a variety of forms. Cellular differentiation and maturation are a subset of vertically integrated processes that extend over several spatial and temporal scales to create a well-defined collective of cells that are able to function cooperatively and reliably at the organ level. Early efforts to understand the molecular mechanisms of cardiomyocyte fate determination focused primarily on genetic and chemical mediators of this process. However, increasing evidence suggests that mechanical interactions between the extracellular matrix (ECM) and cell surface receptors as well as physical interactions between neighboring cells play important roles in regulating the signaling pathways controlling the developmental processes of the heart. Interdisciplinary efforts have made it apparent that the influence of the ECM on cellular behavior occurs through a multitude of physical mechanisms, such as ECM boundary conditions, elasticity, and the propagation of mechanical signals to intracellular compartments, such as the nucleus. In addition to experimental studies, a number of mathematical models have been developed that attempt to capture the interplay between cells and their local microenvironment and the influence these interactions have on cellular self-assembly and functional behavior. Nevertheless, many questions remain unanswered concerning the mechanism through which physical interactions between cardiomyocytes and their environment are translated into biochemical cellular responses and how these signaling modalities can be utilized in vitro to fabricate myocardial tissue constructs from stem cell-derived cardiomyocytes that more faithfully represent their in vivo counterpart. These studies represent a broad effort to characterize biological form as a conduit for information transfer that spans the nanometer length scale of proteins to the meter length scale of the patient and may yield new insights into the contribution of mechanotransduction into heart development and disease.  相似文献   

5.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

6.
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM—mainly the elastic fiber matrix—in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.  相似文献   

7.
It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.  相似文献   

8.
The plant extracellular matrix (ECM) is complex and diverse, and is involved in cell-cell communication in a wide range of developmental, reproductive and pathogenic processes. Characterisation of integral ECM components is leading to improved understanding of their roles in signalling. Interactions between the extracellular domains of plant plasma membrane receptor kinases and their ligands are potentially regulated by the properties of the ECM. Several of these interactions, for example those involving the S-locus receptor kinase, are being characterised in some detail. Non-protein constituents are also implicated in regulating the movement of signalling molecules in the ECM, which is associated with developmental patterning. In contrast to the situation in animal cells, cytoskeleton-integrin-ECM signalling complexes appear not to be dominant features of signal transduction in plant cells. Nevertheless, structural adhesions between the plasma membrane and cell wall are important for a variety of functions.  相似文献   

9.
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination—processes central to metazoans—hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics—the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels—from morphological through molecular—in model tubular organs.  相似文献   

10.
Matrix metalloproteinases (MMPs) are a superfamily of Zn2+‐dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell–cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin‐3, during the thyroid hormone‐dependent amphibian metamorphosis, a process that resembles the so‐called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin‐3 controls apoptosis in different tissues via at least two distinct mechanisms. Birth Defects Research (Part C) 90:55–66, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Dictyostelium discoideum has historically served as a model system for cell and developmental biology, but recently it has gained increasing attention as a model for the study of human diseases. The extracellular matrix (ECM) of this eukaryotic microbe serves multiple essential functions during development. It not only provides structural integrity to the moving multicellular pseudoplasmodium, or slug, it also provides components that regulate cell motility and differentiation. An LC/MS/MS analysis of slug ECM revealed the presence of a large number of proteins in two wild‐type strains, NC4 and WS380B. GO annotation identified a large number of proteins involved in some form of binding (e.g. protein, polysaccharide, cellulose, carbohydrate, ATP, cAMP, ion, lipid, vitamin), as well as proteins that modulate metabolic processes, cell movement, and multicellular development. In addition, this proteomic analysis identified numerous expected (e.g. EcmA, EcmD, discoidin I, discoidin II), as well as unexpected (e.g. ribosomal and nuclear proteins) components. These topics are discussed in terms of the structure and function of the ECM during the development of this model amoebozoan and their relevance to ongoing biomedical research.  相似文献   

12.
基质金属蛋白酶家族介绍(英文)   总被引:8,自引:0,他引:8  
 当细胞外基质 (ECM)组分被破坏时 ,基质金属蛋白酶 (MMPs)影响发育过程并和许多疾病如关节炎及肿瘤相关联 . ECM的正常转换是发育所需要的 . ECM的调节异常却能引起过多的损伤 ,并导致疾病如关节炎 .因此 ,更好地了解 MMP介导的 ECM的水解作用 ,有可能从机理方面为疾病诊断学与治疗学的介入提供依据 .本文介绍了 MMP生物学以及它的 ECM的相关的转换方面的最新进展 .随着新的 MMPs的发现 ,MMP家族正在迅速地扩大 .并且开始向已经确立的基因结构、潜伏期、底物专一性和功能调节方面的范例提出挑战 .即将完成的基因组测序将无容置疑地确定人类 MMPs的有限的数字 .揭示每个 MMP的功能所进行的努力可能标志我们在寻求最终了解细胞与它们的环境之间的相互作用的开始 ,这个过程对于哺乳类物种例如人类的进化是至关重要的 .  相似文献   

13.
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.  相似文献   

14.
From cell-ECM interactions to tissue engineering   总被引:6,自引:0,他引:6  
  相似文献   

15.
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.  相似文献   

16.
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.  相似文献   

17.
18.
Extracellular matrix protein 1 (ECM1), a widely expressed glycoprotein, has been shown to harbor mutations in lipoid proteinosis (LP), an autosomal recessive disorder characterized by profound alterations in the extracellular matrix of connective tissue. The biological function of ECM1 and its role in the pathomechanisms of LP are unknown. Fibulins comprise a family of extracellular matrix components, and the prototype of this family, fibulin-1, is expressed in various connective tissues and plays a role in developmental and pathologic processes. In this study, we demonstrate that ECM1, and specifically the second tandem repeat domain which is alternatively spliced, interacts with the C-terminal segments of fibulins 1C and 1D splice variants which differ in their C-terminal domain III. The interactions were detected by yeast two-hybrid genetic system and confirmed by co-immunoprecipitations. Kinetics of the binding between ECM1 and fibulin-1D, measured by biosensor assay, revealed a K(d) of 5.71 x 10(-8) M, indicating a strong protein-protein interaction. Since distinct splice variants of ECM1 and fibulin-1 have been shown to be co-expressed in tissues affected in LP, we propose that altered ECM1/fibulin-1 interactions may play a role in the pathogenesis of this disease as well as in a number of processes involving the extracellular matrix of connective tissues.  相似文献   

19.
The vascular system matures during embryonic development to form a stable, well-organized tubular network. In vivo data have established that the extracellular matrix (ECM) is crucial in providing structural support to the vascular system. In vitro studies are defining the involvement of ECM-smooth-muscle cell signaling in establishing and maintaining the mature tubular structure. However, correlating cell signaling with established structural functions for the ECM and determining the relative importance of these two roles in vivo is often difficult. Here, we examine human genetics, murine gene targeting and cell biology to better understand the relationship between structural and signaling roles for the ECM in vascular morphogenesis and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号