首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The diacylglycerol lipases (DAGLs) hydrolyse diacylglycerol to generate 2-arachidonoylglycerol (2-AG), the most abundant ligand for the CB1 and CB2 cannabinoid receptors in the body. DAGL-dependent endocannabinoid signalling regulates axonal growth and guidance during development, and is required for the generation and migration of new neurons in the adult brain. At developed synapses, 2-AG released from postsynaptic terminals acts back on presynaptic CB1 receptors to inhibit the secretion of both excitatory and inhibitory neurotransmitters, with this DAGL-dependent synaptic plasticity operating throughout the nervous system. Importantly, the DAGLs have functions that do not involve cannabinoid receptors. For example, 2-AG is the precursor of arachidonic acid in a pathway that maintains the level of this essential lipid in the brain and other organs. This pathway also drives the cyclooxygenase-dependent generation of inflammatory prostaglandins in the brain, which has recently been implicated in the degeneration of dopaminergic neurons in Parkinson''s disease. Remarkably, we still know very little about the mechanisms that regulate DAGL activity—however, key insights can be gleaned by homology modelling against other α/β hydrolases and from a detailed examination of published proteomic studies and other databases. These identify a regulatory loop with a highly conserved signature motif, as well as phosphorylation and palmitoylation as post-translational mechanisms likely to regulate function.  相似文献   

2.
Nodal signaling: developmental roles and regulation   总被引:8,自引:0,他引:8  
Nodal-related ligands of the transforming growth factor-beta (TGFbeta) superfamily play central roles in patterning the early embryo during the induction of mesoderm and endoderm and the specification of left-right asymmetry. Additional roles for this pathway in the maintenance of embryonic stem cell pluripotency and in carcinogenesis have been uncovered more recently. Consistent with its crucial developmental functions, Nodal signaling is tightly regulated by diverse mechanisms including the control of ligand processing, utilization of co-receptors, expression of soluble antagonists, as well as positive- and negative-feedback activities.  相似文献   

3.
4.
Pathogenic mechanisms invoved in glomerulopathies were investigated on the passive form of accelerate model of nephrotoxic nephritis and puromycin aminonucleoside nephrosis. The aim of the present study was to examine the interaction of some cytokines produced by mononuclear leukocytes and mesangial cells in a regulation of synthesis and degradation of the extracellular matrix components and adhesion molecules expression. In acute stage of nephrotoxic nephritis and puromycin aminonucleoside nephrosis the mononuclear leukocyte infiltration into glomeruli was noted. Mononuclear leukocytes produce cytokines that control mesangial cells proliferation and extracellular matrix accumulation. In summary the current study showed a key role of mononuclear leukocytes in inflammation and extracellular matrix turnover. The absence of mononuclear leukocytes or their abundance induce the disturbance of extracellular matrix synthesis and progression factors in glomerulosclerosis.  相似文献   

5.
The extracellular matrix (ECM) of porcine mature oocytes was revealed by transmission electron microscopy (TEM) after treatment with tannic acid and ruthenium red. Present in the perivitelline space (PVS) and on the surface of the zona pellucida (ZP), it appeared to be composed of thin filaments and granules at the interconnections of the filaments, which were interpreted respectively as hyaluronic acid chains and bound proteoglycans. In order to determine whether this material is produced by the corona cells (the same ECM was found also on the surface of the zona pellucida and between cumulus cells) or by the oocyte itself, the synthesis of glycoproteins and glycosaminoglycans was checked by autoradiography on semi-thin and thin sections observed by light and electron microscopy. Immature oocytes within or without cumulus cells, were incubated with L [3H-] fucose or L [3H-] glucosamine – precursors respectively of glycoproteins and hyaluronic acid or hyaluronan (HA) bound to proteoglycans – for various times (with or without chase) and at different stages during in vitro maturation. In the first case, incorporation was found in both cumulus cells and ooplasm (notably in the Golgi area for 3H-fucose) and labeled material accumulated in the ECM of the PVS and of the ZP surface. Labeling in the PVS with both precursors was maximum between metaphase I (MI) and metaphase II (MII) and was partially extracted by hyaluronidase but not by neuraminidase. Tunicamycin, an inhibitor of glycoprotein synthesis, significantly decreased the amount of 3H-fucose labeled molecules in the PVS and increased the incidence of polyspermic penetration during subsequent in vivo fertilization. Since cumulus-free oocytes also secreted 3H-glucosamine containing compounds, both oocyte and cumulus cells probably contribute to the production of the ECM found in the PVS of mature oocytes. ECM and particularly its HA moiety present on both sides of the ZP may constitute a favourable factor for sperm penetration.  相似文献   

6.
《The Journal of cell biology》1989,109(6):3493-3501
The extracellular matrix (ECM) of Volvox contains insoluble fibrous layers that surround individual cells at a distance to form contiguous cellular compartments. Using immunological techniques, we identified a sulfated surface glycoprotein (SSG 185) as the monomeric precursor of this substructure within the ECM. The primary structure of the SSG 185 poly-peptide chain has been derived from cDNA and genomic DNA. A central domain of the protein, 80 amino acid residues long, consists almost exclusively of hydroxyproline residues. The chemical structure of the highly sulfated polysaccharide covalently attached to SSG 185 has been determined by permethylation analysis. As revealed by EM, SSG 185 is a rod-shaped molecule with a 21-nm-long polysaccharide strand protruding from its central region. The chemical nature of the cross- links between SSG 185 monomers is discussed.  相似文献   

7.
Cumulus oophorus, an investing structure unique to oocytes of higher mammals, is induced to synthesize an extensive extracellular matrix by ovulatory stimulus, leading to the characteristic preovulatory expansion of the cumulus-oocyte complex. The extracellular matrix consists of cumulus cell-secreted hyaluronan, proteoglycans and proteins, as well as extrafollicularly originated SHAPs (serum-derived hyaluronan-associated proteins) that are bound covalently to hyaluronan. The secretion and assembly of matrix molecules by cumulus cells are temporally regulated by factors derived from both mural granulosa cells and oocyte, which synchronize the deposition of the cumulus oophorus matrix with other intrafollicular ovulatory events. The cumulus oophorus matrix is essential for ovulation and subsequent fertilization. Recently, taking advantage of animal models with defined genetic modifications, it has become possible to investigate in vivo the structure of the cumulus oophorus matrix, the regulatory mechanism for matrix deposition and its biological functions. This review focuses on the recent findings on the construction of the cumulus oophorus matrix and the regulation.  相似文献   

8.
9.
10.
The metastasis of cancer cells to distant sites is responsible for the vast majority of cancer mortalities yet the molecular mechanisms underlying this extraordinarily complicated process have yet to be sufficiently elucidated. Recently, it has become clear that cancer cells need to inhibit anoikis, a cell death program induced by loss of attachment to the extracellular matrix (ECM), in order to successfully metastasize. These studies have motivated additional research into the relationship between ECM-detachment and cell viability, much of which reveals integral connections between ECM-detachment and cell metabolism. This review serves to thoroughly discuss the signaling pathways and metabolic changes that are induced by ECM-detachment. In addition, the molecular mechanisms by which cancer cells can alter signaling and metabolism to survive in the absence of ECM-attachment will be highlighted. Furthermore, cell death mechanisms that have been observed or implicated in cells detached from the ECM will also be examined. In aggregate, the studies discussed in this review reveal that ECM-detachment can regulate cancer cell metabolism in a variety of distinct cell types and suggest that interfering with metabolism in ECM-detached cells may be a novel and effective chemotherapeutic approach to selectively inhibit tumor progression.  相似文献   

11.
The plant extracellular matrix   总被引:10,自引:0,他引:10  
  相似文献   

12.
A characteristic feature of bone, differentiating it from other connective tissues, is the mineralized extracellular matrix (ECM). Mineral accounts for the majority of the bone tissue volume, being the remainder organic material mostly derived from collagen. This, and the fact that only a limited number of noncollagenous ECM proteins are described, provides a limited view of the bone tissue composition and bone metabolism, the more so considering the increasing understanding of ECM significance for cellular form and function. For this reason, we set out to analyze and extensively characterize the human bone proteome using large-scale mass spectrometry-based methods. Bone samples of four individuals were analyzed identifying 3038 unique proteins. A total of 1213 of these were present in at least 3 out of 4 bone samples. For quantification purposes, we were limited to noncollagenous proteins (NCPs) and we could quantify 1051 NCPs. Most classical bone matrix proteins mentioned in literature were detected but were not among the highly abundant ones. Gene ontology analyses identified high-abundance groups of proteins with a functional link to mineralization and mineral metabolism such as transporters, pyrophosphatase activity, and Ca(2+)-dependent phospholipid binding proteins. ECM proteins were as well overrepresented together with nucleosome and antioxidant activity proteins, which have not been extensively characterized as being important for bone. In conclusion, our data clearly demonstrates that human bone tissue is a reservoir of a wide variety of proteins. In addition to the classical osteoblast-derived ECM, we have identified many proteins from different sources and of unknown function in bone. Thus, this study represents an informative library of bone proteins forming a source for novel bone formation modulators as well as biomarkers for bone diseases such as osteoporosis.  相似文献   

13.
14.
The matrix reorganized: extracellular matrix remodeling and integrin signaling   总被引:14,自引:0,他引:14  
Via integrins, cells can sense dimensionality and other physical and biochemical properties of the extracellular matrix (ECM). Cells respond differently to two-dimensional substrates and three-dimensional environments, activating distinct signaling pathways for each. Direct integrin signaling and indirect integrin modulation of growth factor and other intracellular signaling pathways regulate ECM remodeling and control subsequent cell behavior and tissue organization. ECM remodeling is critical for many developmental processes, and remodeled ECM contributes to tumorigenesis. These recent advances in the field provide new insights and raise new questions about the mechanisms of ECM synthesis and proteolytic degradation, as well as the roles of integrins and tension in ECM remodeling.  相似文献   

15.
16.
The matrilins form a family of oligomeric extracellular adaptor proteins that are most strongly expressed in cartilage but also present in many other extracellular matrices. Matrilins bind to different types of collagen fibrils, to other noncollagenous proteins and to aggrecan. They thereby support matrix assembly by connecting fibrillar components and mediating interactions between these and the aggrecan gel. The binding avidity of a matrilin can be varied by alternative splicing, proteolytic processing and formation of homo- and heterooligomers. Such changes in matrilin structure may lead to a modulation of extracellular matrix assembly. Some matrilins bind weakly to α1β1 integrin and cell surface proteoglycans, but even though matrilins play a role in mechanotransduction and matrilin-3 activates the expression of osteoarthritis-associated genes the physiological relevance of matrilin-cell interactions is unclear. Matrilin knockout mice do not display pronounced phenotypes, which points to a redundancy within the protein family or with functionally related proteins. In man, dominant mutations in the von Willebrand factor A like domain of matrilin-3 lead to a protein retention in the endoplasmic reticulum that causes multiple epiphyseal dysplasia by initiating a cell stress response. In contrast, a mutation in an EGF domain of matrilin-3 that is associated with hand osteoarthritis and disc degeneration does not interfere with secretion but instead with extracellular assembly of matrix structures. In this review we summarize such information on matrilin structure and function that we believe is important for the understanding of extracellular matrix assembly and for deciphering pathophysiological mechanisms in diseases causing skeletal malformations or cartilage degeneration.  相似文献   

17.
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or "adhesome" also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.  相似文献   

18.
Vitamin D metabolites appear to regulate chondrocytes and osteoblasts via a combination of genomic and nongenomic mechanisms. Specificity of the nongenomic response to either 1,25-(OH)2D3 or 24, 25-(OH)2D3 may be conferred by the chemical composition of the target membrane and its fluid mosaic structure, by the presence of specific membrane receptors, or by the interaction with classic Vitamin D receptors. Nongenomic effects have been shown to include changes in membrane fluidity, fatty acid acylation and reacylation, arachidonic acid metabolism and prostaglandin production, calcium ion flux, and protein kinaase C activity. Chondrocytes metabolize 25-(OH)D3 to 1,25-(OH)2D3 and 24,25-(OH)2D3; production of these metabolites is regulated by both growth factors and hormones and is dependent on the state of cell maturation. 1,25-(OH)2D3 and 24,25-(OH)2D3 may interact directly with extracellular matix vesicles to regulate their function in the matrix, including protease activity, resulting in matrix modefication and calcification. Isolated matrix vesicles, produced by growth zone chondrocytes, can activate latent transforming growth factor-β when incubated with exogenous 1,25-(OH)2D3. These observations suggest that nongenomic regulation of martix vesicle structure and function may be a mechanism by which mesenchymal cells, like osteoblasts and chndrocytes, may modulate events in the extracellular matrix at sites distant from the cell surace.  相似文献   

19.
20.
Cell migration in wound healing and disease is critically dependent on integration with the extracellular matrix, but the receptors that couple matrix topography to migratory behavior remain obscure. Using nano-engineered fibronectin surfaces and cell-derived matrices, we identify syndecan-4 as a key signaling receptor determining directional migration. In wild-type fibroblasts, syndecan-4 mediates the matrix-induced protein kinase Calpha (PKCalpha)-dependent activation of Rac1 and localizes Rac1 activity and membrane protrusion to the leading edge of the cell, resulting in persistent migration. In contrast, syndecan-4-null fibroblasts migrate randomly as a result of high delocalized Rac1 activity, whereas cells expressing a syndecan-4 cytodomain mutant deficient in PKCalpha regulation fail to localize active Rac1 to points of matrix engagement and consequently fail to recognize and respond to topographical changes in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号