首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we compared myelin basic protein (MBP) and phytohemagglutinin (PHA) for their ability to induce proliferation and experimental autoimmune encephalomyelitis (EAE) transfer activity in mixed cell cultures obtained from spleen and lymph nodes versus highly selected MBP-specific T cell lines and clones. Established MBP-specific cells derived initially from immune lymph nodes attained both proliferative and EAE-transfer activities after in vitro activation with either MBP or PHA. In contrast, PHA was unable to induce immune spleen cells to transfer EAE, in spite of its potent mitogenic activity. On the basis of these results, we evaluated the in vitro proliferation and differentiation responses of MBP-specific T cells during the line selection process using cells derived from both immune lymph node and immune spleen. During the initial selection process with MBP, proliferation of MBP-specific T cell precursors from immunized spleen populations was reduced relative to lymph node cells. After antigen-dependent selection the encephalitogenic cells from either organ exhibited identical in vitro response characteristics. Freshly isolated immune spleen cells were potent suppressors of MBP-specific T cell proliferation suggesting that the in vitro differences between the two organs was due to splenic suppression of the encephalitogenic cells.  相似文献   

2.
The HLA-DR2 restriction of the T cell response to myelin basic protein (MBP) was studied using murine L cells transfected with DRalpha and either DR2a or DR2b beta-chain cDNA. DR2a and DR2b represent the two isotypic DRbeta chains expressed in DR2Dw2 haplotypes. Eleven MBP-specific cytolytic T cell lines derived from patients with multiple sclerosis were isolated. Two of these cell lines recognized MBP-pulsed DR2-expressing L cell transfectants and four of them could only recognize the L cells if the adhesion molecule ICAM-1 was expressed in addition to HLA-DR2. Five of the six lines were restricted by HLA-DR2a; one line recognized Ag in conjunction with DR2b, but only if ICAM-1 was coexpressed. The remaining five lines did not lyse MBP-pulsed L cells. The ability of the DR2b molecules on transfected cells to stimulate T cells was confirmed with DR2b-allospecific T cell clones. Although five MBP-specific lines were restricted by DR2a, they recognized different parts of the MBP molecule, as demonstrated by the presentation of shorter peptides. Thus, our results suggest that DR2a is a dominant restriction molecule in MBP-specific responses by DR2+ MS patients. The results also indicate that the reported heterogeneity in MBP epitopes recognized by DR2-restricted T cells, may not be due to the use of different restriction elements but rather to the binding of different MBP peptides to DR2a molecules.  相似文献   

3.
Suppressor T cell (Ts) lines specific for myelin basic protein (MBP)-reactive helper T cell (Th) clones were generated from two patients with multiple sclerosis (MS) following a primary culture of peripheral blood mononuclear cells (PBMC) with MBP and cyclosporine A (CsA). These suppressor T cell lines were maintained in culture by alternate stimulation with MBP and antigen-presenting cells (APC). The Ts lines expressed preferentially the CD4 phenotype (5/6 Ts lines tested) and exhibited potent antigen-specific suppressor activity on the proliferation of MBP-specific Th clones and not on the T cell lines with other antigen specificity. For some Ts lines, a Ts-to-Th ratio of 1 was sufficient to inhibit the proliferation of MBP-specific T cells by 90%. The suppressor T cells obtained were weakly responsive to MBP and required the presence of the autologous PBMC for proliferation. Furthermore, proliferation of these suppressor T cell lines was restricted by HLA-DR molecules (for CD4+ Ts lines) and HLA class I (for a CD8+ Ts line). The suppressor T cell lines generated and the techniques described in this study may be helpful in our understanding of the events involved in the immune regulation in MS and other autoimmune diseases.  相似文献   

4.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

5.
In the present study the transplant specific CTL repertoire of a patient (HLA:A1,3, B8,18, Cw5,7 DR3, DQw2, DPw3) with a long term surviving HLA mismatched kidney graft (HLA: A1,24 B8,27 Cw2,7, DR3, w13 DQw2,6 DPw1,3) has been investigated. This patient was unable to generate specific cytolytic activity against donor-derived PHA-blasts in the MLC in which donor spleen cells or B lymphoblastoid cell line were used as stimulator cells. In addition, the CTL precursor frequencies against donor alloantigens were very low (1/67,000). The patient had otherwise normal immune responses in vivo and in vitro and no signs of transplant rejection. Transplant specific CTL clones were generated in high frequencies (1/195) from T cell bulk cultures activated by PHA in the absence of any sensitization by donor Ag in vitro. The repertoire of 14 donor-reactive CTL clones (12 TCR-alpha beta+ and 2 TCR-gamma delta+) was analyzed. Two TCR-alpha beta+ CD8+ clones were specific for B27. Ten TCR-alpha beta+ CTL clones directed against class II HLA Ag were isolated. Seven of these were CD4+ and recognized DRw13 (3), DQw6 (3), and DPw1 (1), whereas three of these clones were CD4-CD8+ recognizing DRw13 (1) and DQw6 (2). In addition, two donor-specific TCR-gamma delta+ CTL clones were obtained recognizing HLA-A9(23,24) and DQw6. Our data indicate that the precursors of CTL clones specifically directed against donor class I or II HLA Ag are not deleted from the repertoire and that part of this reactivity resides in the TCR-gamma delta+ fraction.  相似文献   

6.
A previous study using a Nef-defective human immunodeficiency virus type 1 (HIV-1) mutant suggested that Nef-mediated down-regulation of HLA class I on the infected cell surface affects the cytolytic activity of HIV-1-specific cytotoxic T-lymphocyte (CTL) clones for HIV-1-infected primary CD4(+) T cells. We confirmed this effect by using a nef-mutant HIV-1 strain (NL-M20A) that expresses a Nef protein which does not induce down-regulation of HLA class I molecules but is otherwise functional. HIV-1-specific CTL clones were not able to kill primary CD4(+) T cells infected with a Nef-positive HIV-1 strain (NL-432) but efficiently lysed CD4(+) T cells infected with NL-M20A. Interestingly, CTL clones stimulated with NL-432-infected CD4(+) T cells were able to produce cytokines, albeit at a lower level than when stimulated with NL-M20A-infected CD4(+) T cells. This indicates that Nef-mediated HLA class I down-regulation affects CTL cytokine production to a lesser extent than cytolytic activity. Replication of NL-432 was partially suppressed in a coculture of HIV-1-infected CD4(+) T cells and HIV-1-specific CTL clones, while replication of NL-M20A was completely suppressed. These results suggest that HIV-1-specific CD8(+) T cells are able to partially suppress the replication of HIV-1 through production of soluble HIV-1-suppressive factors such as chemokines and gamma interferon. These findings may account for the mechanism whereby HIV-1-specific CD8(+) T cells are able to partially but not completely control HIV-1 replication in vivo.  相似文献   

7.
Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors to selectively redirect therapeutic T cells against myelin basic protein (MBP)-specific T lymphocytes implicated in MS. We generated two heterodimeric receptors that genetically link the human MBP84-102 epitope to HLA-DR2 and either incorporate or lack a TCRzeta signaling domain. The Ag-MHC domain serves as a bait, binding the TCR of MBP-specific target cells. The zeta signaling region stimulates the therapeutic cell after cognate T cell engagement. Both receptors were well expressed on primary T cells or T hybridomas using a tricistronic (alpha, beta, green fluorescent protein) retroviral expression system. MBP-DR2-zeta-, but not MBP-DR2, modified CTL were specifically stimulated by cognate MBP-specific T cells, proliferating, producing cytokine, and killing the MBP-specific target cells. The receptor-modified therapeutic cells were active in vivo as well, eliminating Ag-specific T cells in a humanized mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP84-102/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS.  相似文献   

8.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

9.
Three HLA-B27 allospecific cytolytic T lymphocyte (CTL) clones were isolated by limiting dilution of HLA-B27-negative responder cells stimulated with HLA-B27.1-positive lymphoblastoid cells. These clones displayed three distinct reaction patterns when tested for their lytic ability against target cells expressing various structurally defined HLA-B27 subtypes. One of the clones was specific for HLA-B27.1; a second CTL clone reacted only with B27.1 and, less efficiently, with B27.2; the third clone recognized both B27.1 and B27f targets but not cells expressing any other B27 subtype. These results indicate that HLA-B27f is a functional variant amenable to differential recognition by alloreactive CTL. A correlation of the structure of the HLA-B27 subtypes with the reactivity of these clones revealed that multiple B27-specific alloreactive CTL are activated against epitopes of the HLA-B27.1 molecule sharing common structural features. This illustrates the complexity and fine specificity of the allogeneic CTL response against class I HLA antigens and suggests that their immunodominant regions are those which are capable of eliciting a diverse polyclonal response against each of these regions, rather than inducing the selective expansion of a single T cell clone.  相似文献   

10.
Clones of human cytotoxic T cells (Tc) specific for Epstein Barr virus (EBV) were isolated from peripheral blood lymphocyte (PBL) cultures stimulated repeatedly with autologous EBV-transformed lymphoblastoid cell line (LCL) cells in vitro. The method employed to clone EBV-specific Tc was a limiting dilution technique utilizing T cell growth factor (TCGF). The EBV specificity of Tc clones was determined by showing that they were significantly cytotoxic for autologous LCL cells but not for either autologous PBL or (natural killer-sensitive) K-562 cells. Eight EBV-specific Tc clones derived from a single donor exhibited distinct cytotoxic patterns against allogeneic LCL targets. Two clones were cytotoxic to LCL targets sharing both HLA-A26 and B15 antigens with effectors, and killing by two other clones was strongly restricted to autologous LCL cells. The four remaining clones showed cytotoxicities against various allogeneic LCL targets irrespective of HLA antigen expression. Eight EBV-specific Tc clones derived from a second donor also exhibited a wide spectrum of cytotoxicity to allogeneic LcL targets. We conclude that EBV-specific Tc, induced in vitro, consist of a number of clones with respect to restrictions imposed by the major histocompatibility complex. The determinants regulating these restrictions may include not only private HLA antigenic determinants that are defined by the HLA serotyping, but also undefined HLA antigenic determinants.  相似文献   

11.
Analysis of cellular immune response to EBV by using cloned T cell lines   总被引:9,自引:0,他引:9  
Eight cloned T cell lines specific for Epstein Barr virus-transformed B lymphocytes were derived. In the presence of the autologous virus-infected B cells, the T cell lines show HLA-restricted cytotoxic activity and also secrete alpha-interferon in sufficient amounts to inhibit infection and transformation. Four of these clones showed restriction to a single HLA locus (two for A3, and two for B7) and three showed exquisite self-restriction lysing only autologous targets. These seven clones expressed the classical cell surface phenotype of cytotoxic T cells being T3, 8, 11, and la-positive and T4-negative. An eighth clone that lacked the T8 surface marker appeared to recognize both B7 and BW51. HLA restriction was confirmed: 1) by the ability of a monoclonal antibody against an HLA-A,B,C framework antigen (W6-32) to block the cytotoxicity; 2) the failure of the clones to lyse Daudi, an EBV-positive, HLA-A,B, C-negative cell line; and 3) successful competition of the cytotoxicity by autologous but not allogeneic cold targets. The cloned T cells do not kill EBV-negative targets such as autologous pokeweed mitogen blasts and cell lines including CEM and the natural killer cell target K562. The results suggest T cell clones may be generated against an EBV-associated membrane antigen on transformed B cells, perhaps equivalent to the lymphocyte-determined membrane antigen, and that the recognition is restricted by a single HLA determinant. We propose that single T cells can play multiple roles in controlling EBV infection in vitro and in vivo including the elimination of transformed cells by cytotoxicity and the prevention by secreted interferon of further re-infection and transformation.  相似文献   

12.
Cytolytic human T cell clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.  相似文献   

13.
We studied the enhancement of cytolytic activity of T3- natural killer cell-derived clones, of T3+ T cell activated killer (AK) clones, and of fresh peripheral blood lymphocytes (PBL) by various crude and recombinant interferon (r-IFN) as well as IL 2 preparations. It was found that IFN-beta had the highest cytotoxicity inducing potency as compared to crude or r-IFN-alpha or -gamma preparations. This enhancement was blocked by anti-IFN-beta antibodies but not by anti-IFN-gamma antibodies. IL 2 also strongly enhances cytolytic activity in cloned T3- killer cells that express the IL 2 receptors as determined with the anti-Tac monoclonal antibody (MAb) at concentrations of IL 2 (25 U/ml) which induced one-half of the maximal proliferation capacity in human T cells and murine CTLL cells. For enhancement of cytolytic activity in fresh NK cells, a much higher concentration of IL 2 is required. In addition, the enhancement of cytolytic activity by r-IL 2 but not that by IFN-beta can be reduced by anti-Tac MAb, suggesting that the IL 2 receptor is involved in the enhancement by IL 2, but not by IFN. Both IFN-beta and IL 2 were able to enhance (over threefold) the cytolytic activity of T3- cloned killer cells against a variety of tumor target cell types. Another remarkable observation was that K562 cells, the most commonly used target cell for determining NK cell cytolytic activity, are not the most suitable targets to assess enhancement of nonspecific lytic activity as compared to Daudi or lung tumor-derived cell lines. No enhancement of anti-body-dependent cellular cytotoxicity was observed. Finally, the effects of these biological response modifiers were much more pronounced on "fresh" and cloned T3- natural killer cell-derived than on T3+-activated killer mature T cell-derived clones.  相似文献   

14.
We have cloned lines of IL 2-dependent human T cells derived from alloantigen, soluble antigen (tetanus toxoid), mitogen, or IL 2-stimulated peripheral blood lymphocytes and characterized their surface marker expression and cytolytic activity. The surface phenotype and cytolytic function was compared with the ability of these T cell clones to release cytotoxic lymphokines in response to mitogenic lectins. The cytotoxins released by these CTL clones were detected on the murine L929 target cells in a 16-hr assay. All of the T cell clones, whether stimulated by HLA alloantigens, tetanus toxoid, or mitogens, exhibited killer cell activity and the capacity to secrete a soluble cytotoxin(s). Specific polyclonal antisera to recombinant human tumor necrosis factor (rTNF) and human alpha-lymphotoxin (alpha LT) were unable to neutralize the cytotoxic activity released by most of these CTL clones. These results indicate that human CTL produce a novel antigenic form(s) of cytotoxin that we have termed CTL-toxin. Supernatants from several CTL clones yielded a cytotoxic activity that was partially neutralized (10 to 40%) by saturating levels of anti-TNF (but not anti-alpha LT) indicating that human CTL may be capable of producing a TNF-like molecule. Only two out of 60 CTL clones studied thus far produced a cytotoxic activity that was partially neutralized by anti-alpha LT (20 to 40%). Collectively, these results suggest that although both the CD4 and the CD8 subpopulations of human cytotoxic T cells may be capable of releasing several types of cytotoxins in response to mitogenic signals, the predominant cytotoxin is distinct from alpha LT and TNF.  相似文献   

15.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory neurological disease initiated by activated T cells specific for the autoantigen, myelin basic protein (MBP). The ability of Lewis rat splenic T cells to transfer EAE after in vitro incubation with MBP-pulsed dendritic cells (DC) was used as an index of MBP-specific T cell activation. OVA, previously processed by macrophages, was incubated with MBP and DC at the pulsing stage to determine whether it could inhibit presentation of the autoantigen. At molar equivalents of 2.5:1 and 20:1 relative to MBP, processed OVA increasingly inhibited the ability of DC to activate MBP-specific T cells for EAE transfer. Unprocessed OVA, which cannot be presented immunogenically by Lewis rat DC, was much less effective. However, processed OVA added to DC after they had been pulsed with MBP could not compete. OVA also blocked appearance of EAE when mixed with MBP/CFA in the inoculum used for active induction of the disease. Splenic T cells from MBP + OVA/CFA-immunized rats transferred EAE with a substantially delayed onset, suggesting that a reduced number of MBP-specific T cells was generated by immunizing with the OVA + MBP mixture compared with MBP alone. Overall, the data indicate that fragments of a foreign protein, OVA, which can be bound by APC, can also inhibit presentation of encephalitogenic determinants of MBP to T cells.  相似文献   

16.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

17.
Functionally defined clones and lines of murine lymphocytes including myelomas, helper, suppressor and cytolytic T lymphocytes were analyzed for their glycosphingolipids (GSLs). GSLs were characterized by thin-layer chromatography and by high-performance liquid chromatography. Lymphocytes with different functions displayed, besides a number of common GSLs, some characteristic GSLs that may be regarded as markers. Globotriaosylceramide was found on myelomas and B blasts, whereas globotetraosylceramide was confined to helper T cells. All T cells including cytolytic T lymphocytes displayed gangliotetraosylceramide (asialo-GM1) as a major GSL, which was further characterized by sequential degradation with exoglycosidases.  相似文献   

18.
After activation with specific antigen and antigen presenting cells (APC) L3T4+ inducer T-cell clones can lyse Ia+ APC. The present study characterizes the mechanism of activation and specificity of L3T4+ inducer cell-mediated cytolytic function. Two methods that bypass the physiological stimulus of antigen presented on Ia+ APC were used to activate L3T4+ clones. The first method utilized an antireceptor monoclonal antibody (MAb), KJ16.133, to activate KJ16.133+ clones. The activated clones expressed nonspecific cytolytic activity, killing target cells irrespective of their H-2 haplotype or their ability to express cell surface Ia molecules. The crosslinking of bound KJ16.133 antibody greatly enhanced cytolytic activity. This activation is receptor specific because KJ16.133- clones were not activated under identical conditions. The second method of activation was provided by a synergistic action of phorbol-12-myristate-13-acetate (PMA) and ionophore A23187. These agents nonspecifically activated all L3T4+ clones tested. The simultaneous presence of the two agents is required for maximal activation. Again, the activated clones expressed potent nonspecific cytolytic activity. These observations demonstrated that L3T4+ inducer T-cell-mediated killing can be separated into two stages: an activation step, which can be specifically and nonspecifically triggered and an effector phase which causes nonspecific lysis of bystander targets. The induction of nonspecific cytolytic activity by antireceptor MAb was inhibited by anti-L3T4 MAb (GK1.5). In contrast, activation of nonspecific cytolytic activity by treatment with PMA plus A23187 was not inhibited by anti-L3T4 MAb. Under the above activation conditions, antireceptor MAb selectively induced the secretion of IL-3 and expression of nonspecific cytolytic activity. However, there was little or no concomitant proliferation and production of IL-2. In contrast, activation by PMA plus A23187 coordinately induces expression of nonspecific cytolytic activity, secretion of lymphokines (IL-3 and IL-2), and cell proliferation. Thus, the anticlonotypic activation preferentially induces certain functions whereas activation with PMA plus A23187 is not selective.  相似文献   

19.
Proliferation and the cloning efficiency of T3+ but not T3- T cells are increased by the addition of lectins (phytohemagglutinin; PHA) to the culture medium. In contrast to that of T3+ cloned cell lines, the cytolytic activity of T3- clones is not enhanced by PHA, as we report here. We have investigated the effects of anti-T3 monoclonal antibody (MAb) and PHA on the proliferative capacity and cytolytic activity of various T3+ and T3- clones and cells to determine the possible involvement of the T3 receptor in these processes. We found that, in addition to inhibition of allospecific cytotoxicity, anti-T3 MAb can induce and/or enhance nonspecific cytolytic activity against particular target cells in cloned allospecific cytotoxic T cells (CTL) following preincubation of the effector cells with PHA or anti-T3. This enhancement of cytolytic activity is seen in T3+ but not T3- activated killer (AK) clones or fresh T3- natural killer (NK) cells and depends on the concentrations of anti-T3 MAb or PHA used. We conclude that the T3-Ti antigen-receptor complex is involved in the transmission of the activation signals by anti-T3 and PHA.  相似文献   

20.
We describe the properties of two Ly-1+2- T cell clones (Ly-1.14 and Ly-1.21), which are maintained in long-term culture in the absence of other cell types. The clones require media containing a source of interleukin 1 as well as interleukin 2. They retain physiologic responses to interleukin 1, which is required for optimal production of T cell lymphokines by these clones in response to concanavalin A (Con A). The two Ly-1+2- T cell clones differ in their production of lymphokines after stimulation by Con A. The supernatant of clone Ly-1.21 promotes the proliferation of T cells maintained in long-term culture, induces antibody synthesis in cultures of B cells and antigen, and induces the differentiation of cytolytic cells in cultures of thymocytes and antigen; these assays define the properties of T cell growth factor (TCGF), T cell-replacing factor for B cells (TRF-B), and T cell-replacing factor for cytolytic cells (TRF-C), respectively. In contrast, the supernatant of clone Ly-1.14 contains only TCGF activity and does not promote antibody synthesis by B cells or differentiation of cytolytic cells from thymocytes. The results indicates that TCGF and TRF activities reside on independent, although perhaps related, molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号