首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Measurements are reported on certain isotopic fluxes during the net conversion of glutamine, ADP and Pi to glutamate, NH3, and ATP by Escherichia coli glutamine synthetase (adenylylated form, Mn2+ activated) in presence of a hexokinase/glucose trap to remove the ATP formed during the reaction. The results show that the transfer of oxygens from Pi to glutamine is the most rapid of the measured isotopic interchanges, over five oxygens from Pi being transferred to glutamine for each glutamate formed by net reaction. Under similar conditions, the oxygen transfer from Pi to glutamate, was stimulated somewhat by an increase in the glutamate concentration but inhibited by an increase in the ammonia concentration. The enzyme from brain or peas did not show the rapid transfer of 18O from Pi to glutamine shown by the E. coli enzyme. Deductions are also made from the data about the availability of the oxygens of gamma-carboxyl of bound glutamate for reaction. The most logical explanation of the results with the E. coli enzyme is that the gamma-carboxyl group of bound glutamate has sufficient rotational freedom so that under conditions of rapid substrate interconversion either carboxylate oxygen can participate in the reaction. The results with the pea enzyme are consistent with hindered rotation of the gamma-care additional findings make likely a relative order of certain catalytic steps for the E. coli enzyme as follows: ATP release less than NH3 release less than glutamate release less than substrate interconversion less than glutamine release and Pi release and glutamate release less than ADP release.  相似文献   

2.
I A Rose 《Federation proceedings》1978,37(14):2775-2782
Reversible gamma-PO3 transfer in ATP reactions can be recognized by exchange of 18O from the beta,gamma-bridge position to the beta-P-nonbridge positions: (see article). Such intramolecular exchange is less demanding for the detection of the bond cleavage than the usual ATP:ADP isotope exchange because it does not require dissociation of bound ADP from the intermediate complex. Acyl phosphate intermediates are indicated for the glutamine synthetase and carbamyl-P synthetase reactions by their extreme requirements for glutamate and bicarbonate, respectively, for positional oxygen exchange. No support is given for E-P or concerted mechanisms. No support is found for an active CO2 in the latter reaction, although this is not ruled out by the data. Positional isomerization in ATP occurs with lamellae from spinach chloroplast only in the light. When the ATP molecule interacts, it also undergoes complete exchange of the gamma-PO3 oxygen with water before it rejoins the pool of free ATP. The difference in rates of the two exchanges suggests that the torsional motion of ADP-beta-PO3 is greatly hindered on the enzyme. This may explain, by the argument of substrate activation, the rapid reversibility of the ATPase reaction on the enzyme.  相似文献   

3.
The purL gene of Escherichia coli encoding the enzyme formylglycinamidine ribonucleotide (FGAM) synthetase which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and MgATP to FGAM, glutamate, ADP, and Pi has been cloned and sequenced. The mature protein, as deduced by the structural gene sequence, contains 1628 amino acids and has a calculated Mr of 141,418. Comparison of the purL control region to other pur loci control regions reveals a common region of dyad symmetry which may be the binding site for the "putative" repressor protein. Construction of an overproducing strain permitted purification of the protein to homogeneity. N-Terminal sequence analysis and comparison of glutamine binding domain sequences (Ebbole & Zalkin, 1987) confirm the amino acid sequence deduced from the gene sequence. The purified protein exhibits glutaminase activity of 0.02% the normal turnover, and NH3 can replace glutamine as a nitrogen donor with a Km = 1 M and a turnover of 3 min-1 (2% glutamine turnover). The enzyme forms an isolable (1:1) complex with glutamine: t1/2 is 22 min at 4 degrees C. This isolated complex is not chemically competent to complete turnover when FGAR and ATP are added, demonstrating that ammonia and glutamine are not covalently bound as a thiohemiaminal available to complete the chemical conversion to FGAM. hydroxylamine trapping experiments indicate that glutamine is bound covalently to the enzyme as a thiol ester. Initial velocity and dead-end inhibition kinetic studies on FGAM synthetase are most consistent with a sequential mechanism in which glutamine binds followed by rapid equilibrium binding of MgATP and then FGAR. Incubation of [18O]FGAR with enzyme, ATP, and glutamine results in quantitative transfer of the 18O to Pi.  相似文献   

4.
A new approach for assessing of catalytic cooperativity may occur between subunits has been applied to succinyl-CoA synthetase. This is based on the extent of oxygen exchange between medium [18O]Pi and succinate per molecule of ATP cleaved during steady state succinyl-CoA synthesis. Suitable traps are used to remove succinyl-CoA and ADP as soon as they are released to the medium. With the Escherichia coli enzyme, which has an alpha 2 beta 2 structure, a pronounced increase in oxygen exchange per ATP cleaved occurs as ATP concentration is lowered. In contrast, when the CoA concentration is varied, the oxygen exchange per molecule of product formed remains constant. Also, with the pig heart enzyme, which is shown to retain its alpha beta structure during catalysis and thus has only one catalytic site, no modulation of oxygen exchange by ATP concentration is observed. These experimental findings show that the binding of an ATP either promotes the dissociation of bound succinyl-CoA or decreases its participation in exchange. Measurement of the distribution of [18O]Pi species found as exchange occurs shows that only one catalytic sequence is involved in exchange at various ATP concentrations. These observations along with other controls and results eliminate most other explanations of the ATP modulation of the exchange and suggest that binding of ATP at one catalytic site promotes catalytic site promotes catalytic events at an alternate catalytic site.  相似文献   

5.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

6.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

7.
Glutamine metabolism in lymphocytes of the rat.   总被引:24,自引:7,他引:17       下载免费PDF全文
The metabolism of glutamine in resting and concanavalin-A-stimulated lymphocytes was investigated. In incubated lymphocytes isolated from rat mesenteric lymph nodes, the rates of oxygen and glutamine utilization and that of aspartate production were approximately linear with respect to time for 60 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 90 min. The major end products of glutamine metabolism were glutamate, aspartate and ammonia: the carbon from glutamine may contribute about 30% to respiration. When both glucose and glutamine were presented to the cells, the rates of utilization of both substances increased. Evidence was obtained that the stimulation of glycolysis by glutamine could be due, in part, to an activation of 6-phosphofructokinase. Starvation of the donor animal increased the rate of glutamine utilization. The phosphoenolpyruvate carboxykinase inhibitor mercaptopicolinate decreased the rate of glutamine utilization by 28%; the rates of accumulation of glutamate and ammonia were decreased, whereas those of lactate, aspartate and malate were increased. The mitogen concanavalin A increased the rate of glutamine utilization (by about 51%). The rate of [3H]thymidine incorporation into DNA caused by concanavalin A in cultured lymphocytes was very low in the absence of glutamine; it was increased about 4-fold at 1 microM-glutamine and was maximal at 0.3 mM-glutamine; neither other amino acids nor ammonia could replace glutamine.  相似文献   

8.
We have examined intermediate Pi-water oxygen exchange during [gamma-18O]ATP hydrolysis by the F1 adenosine triphosphatase from Escherichia coli K-12. Water oxygen incorporation into each Pi released was increased as ATP concentration was lowered as observed previously for the same reaction catalyzed by the enzyme from eukaryotic sources. Heterogeneous distributions of 18O in product Pi were produced by coexisting epsilon subunit-replete and epsilon subunit-depleted enzyme molecules. The epsilon-replete enzyme showed a much higher probability for oxygen exchange. These data imply that the epsilon subunit inhibits net ATP hydrolysis by imposing conformational constraints which reduce the cooperative conformational interactions that promote ADP and Pi release. Four enzyme variants altered in alpha or beta subunit structure with reduced net hydrolytic activity showed sharply increased oxygen exchange during ATP hydrolysis. Heterogeneity was apparent in the 18O distribution of the product Pi, however. That behavior could reflect hindered conformational interactions and/or increased affinity of the alpha 3 beta 3 gamma delta complex for the epsilon subunit. In contrast, enzyme from mutant uncA401 showed very little oxygen exchange accompanying hydrolysis of 20 microM ATP. This is the only enzyme so far reported with this unusual property. Its rate limitation appears to be in the hydrolytic rather than the product release step of the catalytic sequence.  相似文献   

9.
The mechanism of ATP hydrolysis by nitrogenase shows some similarity to that proposed for actomyosin and for GTP hydrolysis by p21 ras. All three systems involve the formation of an active complex from two component proteins, nucleotide-induced changes in protein conformation, energy transduction that in the case of nitrogenase involves a decrease in redox potential of metal centres, and a slow dissociation of the protein complex. Metal ion activation (Mg2+ or Ca2+) and in-line displacement of ADP by H2O without enzyme phosphorylation are also common features. At 5 degrees C, stopped-flow calorimetry shows that the kinetic and thermodynamic parameters for endothermic, reversible on-enzyme cleavage of MgATP by nitrogenase and myosin subfragment 1 are remarkably similar. [18O4]Pi-water exchange studies also show that ATP cleavage on nitrogenase and myosin are reversible.  相似文献   

10.
The change in reaction energetics of the bicarbonate-dependent ATPase reaction of Escherichia coli carbamoyl phosphate synthetase has been investigated for two site-directed mutations of the essential cysteine in the small subunit. Cysteine 269 has been proposed to facilitate the hydrolysis of glutamine by the formation of a glutamyl-thioester intermediate. The two mutant enzymes, C269S and C269G, along with the isolated large subunit, exhibit a 2-2.6-fold increase in the bicarbonate-dependent ATPase reaction relative to that observed for the wild type enzyme. In the presence of glutamine the overall enhancement is 3.7 and 9.0 for the C269G and C269S mutant enzymes, respectively. Carboxyphosphate is an intermediate in the bicarbonate-dependent ATPase reaction. The cause of the rate enhancements was investigated by measuring the positional isotope exchange rate in [gamma-18O4] ATP relative to the net rate of ATP hydrolysis. This ratio (Vex/Vchem) is a measure of the partitioning of the enzyme-carboxyphosphate-ADP complex. The partitioning ratio for the mutants is identical within experimental error to that observed for the wild type enzyme. This observation is consistent with the conclusion that the ground state for the enzyme-carboxyphosphate-ADP complex in the mutants is destabilized relative to the same complex in the wild type enzyme. If the increase in the absolute rate of ATP hydrolysis was due to a stabilization of the transition state for carboxyphosphate hydrolysis then the positional isotope exchange rate relative to the chemical hydrolysis rate would have been expected to decrease in the mutants.  相似文献   

11.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

12.
Intact avian liver mitochondria were shown to synthesize glutamine from glutamate in the absence of exogenous ATP and ammonia. With L-[U-14C]glutamate as the substrate, there was an approximate 1:1 stoichiometry between glutamate deaminated (as measured by the release of 14CO2 due to alpha-keto-[14C]glutarate oxidation) and glutamate amidated. With L-[15N]glutamate as the substrate, the isolated glutamine was shown by low and high resolution mass spectrometry of its phenylisothiocyanate derivative to contain 15N in both the alpha-amino and amide groups. Thus, for each mole of glutamate taken up, approximately 0.5 mol is deaminated and the other 0.5 mol serves as a substrate for glutamine synthetase previously localized in these mitochondria (Vorhaben, J. E., and Campbell, J. W. (1972) J. Biol. Chem. 247,2763). The permeability of L-glutamine to intact avian liver mitochondria was studied by a rapid centrifugation technique. Efflux as well as influx of L-glutamine were both rapid and appeared to occur by a passive, energy-independent process. These results indicate that the mitochondrial glutamine synthetase present in uricotelic species represents the primary ammonia detoxication reaction in that ammonia released intramitochondrially during amino acid catabolism is converted to glutamine for efflux to the cytosol where it may serve as a substrate for purine (uric acid) biosynthesis.  相似文献   

13.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

14.
CTP synthase catalyzes the reaction glutamine + UTP + ATP --> glutamate + CTP + ADP + Pi. The rate of the reaction is greatly enhanced by the allosteric activator GTP. We have studied the glutaminase half-reaction of CTP synthase from Lactococcus lactis and its response to the allosteric activator GTP and nucleotides that bind to the active site. In contrast to what has been found for the Escherichia coli enzyme, GTP activation of the L. lactis enzyme did not result in similar kcat values for the glutaminase activity and glutamine hydrolysis coupled to CTP synthesis. GTP activation of the glutaminase reaction never reached the levels of GTP-activated CTP synthesis, not even when the active site was saturated with UTP and the nonhydrolyzeable ATP-binding analog adenosine 5'-[gamma-thio]triphosphate. Furthermore, under conditions where the rate of glutamine hydrolysis exceeded that of CTP synthesis, GTP would stimulate CTP synthesis. These results indicate that the L. lactis enzyme differs significantly from the E. coli enzyme. For the E. coli enzyme, activation by GTP was found to stimulate glutamine hydrolysis and CTP synthesis to the same extent, suggesting that the major function of GTP binding is to activate the chemical steps of glutamine hydrolysis. An alternative mechanism for the action of GTP on L. lactis CTP synthase is suggested. Here the binding of GTP to the allosteric site promotes coordination of the phosphorylation of UTP and hydrolysis of glutamine for optimal efficiency in CTP synthesis rather than just acting to increase the rate of glutamine hydrolysis itself.  相似文献   

15.
Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.  相似文献   

16.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

17.
J J Sines  D D Hackney 《Biochemistry》1986,25(20):6144-6149
The synthesis of ATP from highly enriched [18O]Pi by submitochondrial particles driven by succinate oxidation produces distributions of 18O-labeled ATP species that deviate from the distributions predicted by a simple model for the exchange. Control experiments indicate no change in isotopic distribution when [18O]ATP is synthesized from [18O]ADP by adenylate kinase, which is bound to the submitochondrial particles. The observed deviations are in the opposite direction from that produced by heterogeneity due to multiple pathways for ATP synthesis. Two types of complex models can account for the observed deviations. One model has nonequivalence of the Pi oxygens during the exchange reaction, due to incomplete randomization of the Pi oxygens during the reversible cycles of hydrolysis and synthesis of bound ATP. The other model assumes that, during each turnover, a slow transition must occur between a high-exchange and a low-exchange pathway.  相似文献   

18.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

19.
The kinetic mechanism of Escherichia coli guanosine-5'-monophosphate synthetase has been determined by utilizing initial velocity kinetic patterns and positional isotope exchange experiments. The initial velocity patterns of MgATP, XMP, and either NH3 or glutamine (as nitrogen source) were consistent with the ordered addition of MgATP followed by XMP and then NH3. The enzyme catalyzes the exchange of 18O from the beta-nonbridge positions of [beta,beta,beta gamma,gamma,gamma,gamma-18O6]ATP into the alpha beta-bridge position only in the presence of XMP and Mg2+. The exchange reaction did not require NH3. The isotope exchange reaction increased as the XMP concentration increased and then decreased at saturating levels of XMP. These results also support the ordered addition of MgATP followed by XMP. GMP synthetase catalyzes the hydrolysis of ATP to AMP and PPi along with an ATP/PPi exchange reaction in the absence of NH3. These data taken together support a mechanism in which the initial step in the enzymatic reaction involves formation of an adenyl-XMP intermediate. Psicofuranine, an irreversible inhibitor of the enzyme, acts by preventing the release or further reaction of adenyl-XMP with H2O or NH3 but does not suppress the isotope exchange or ATP/PPi exchange reactions. GMP synthetase has also been shown to require a free divalent cation for full activity. When Ca2+ replaces Mg2+ in the reaction, the positional isotope exchange reaction is enhanced but the reaction with NH3 to form GMP is greatly suppressed.  相似文献   

20.
The Escherichia coli open reading frame YbdK encodes a member of a large bacterial protein family of unknown biological function. The sequences within this family are remotely related to the sequence of gamma-glutamate-cysteine ligase (gamma-GCS), an enzyme in the glutathione biosynthetic pathway. A gene encoding gamma-GCS in E. coli is already known. The 2.15 A resolution crystal structure of YbdK reveals an overall fold similar to that of glutamine synthetase (GS), a nitrogen metabolism enzyme that ligates glutamate and ammonia to yield glutamine. GS and gamma-GCS perform related chemical reactions and require ATP and Mg2+ for their activity. The Mg2+-dependent binding of ATP to YbdK was confirmed by fluorescence spectroscopy employing 2'(or 3')-O-(trinitrophenyl)adenosine 5'-triphosphate, and yielding a dissociation constant of 3 +/- 0.5 microM. The structure of YbdK contains a crevice that corresponds to the binding sites of ATP, Mg2+ and glutamate in GS. Many of the GS residues that coordinate the metal ions and interact with glutamic acid and the phosphoryl and ribosyl groups of ATP are also present in YbdK. GS amino acids that have been associated with ammonia binding have no obvious counterparts in YbdK, consistent with a substrate specificity that is different from that of GS. Ligase activity between glutamic acid and each of the twenty amino acid residues was tested on high performance liquid chromatography (HPLC) by following the hydrolysis of ATP to ADP. Catalysis was observed only with cysteine. A pyruvate kinase/lactic acid dehydrogenase coupled assay was used to rule out GS activity and to determine that YbdK exhibits gamma-GCS activity. The catalytic rate was found to be approximately 500-fold slower than that reported for authentic gamma-GCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号