首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number L34353. The name listed for this sequence has been officially assigned by the WHO Nomenclature Committee in August 1994. This follows the agreed policy that subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al 1994), names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report  相似文献   

2.
3.
The nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank nucleotide sequence database and have been assigned the accession number Z48631. The name listed for this sequence was officially assigned by the WHO Nomenclature Committee in November 1994. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al. 1994), names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The nucleotide sequence data reported in this paper have been submittedto the GenBank nucleotide sequence data base and have been assigned the accession number L19054.  相似文献   

13.
In this study, we explore the geographic and temporal distribution of a unique variant of the O blood group allele called O1vG542A, which has been shown to be shared among Native Americans but is rare in other populations. O1vG542A was previously reported in Native American populations in Mesoamerica and South America, and has been proposed as an ancestry informative marker. We investigated whether this allele is also found in the Tlingit and Haida, two contemporary indigenous populations from Alaska, and a pre‐Columbian population from California. If O1vG542A is present in Na‐Dene speakers (i.e., Tlingits), it would indicate that Na‐Dene speaking groups share close ancestry with other Native American groups and support a Beringian origin of the allele, consistent with the Beringian Incubation Model. If O1vG542A is found in pre‐Columbian populations, it would further support a Beringian origin of the allele, rather than a more recent introduction of the allele into the Americas via gene flow from one or more populations which have admixed with Native Americans over the past five centuries. We identified this allele in one Na‐Dene population at a frequency of 0.11, and one ancient California population at a frequency of 0.20. Our results support a Beringian origin of O1vG542A, which is distributed today among all Native American groups that have been genotyped in appreciable numbers at this locus. This result is consistent with the hypothesis that Na‐Dene and other Native American populations primarily derive their ancestry from a single source population. Am J Phys Anthropol 151:649–657, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号