首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gene encoding thermostable L-2-halo acid dehalogenase ofPseudomonas sp. YL was isolated, and its over-expression system was constructed. Gene library was prepared fromSau3AI fragments of total DNA fromPs. sp. YL, pUC118 as a vector andEscherichia coli JM109 as a host. The recombinant cells resistant to bromoacetate, a germicide, were isolated and shown to produce L-2-halo acid dehalogenase. Subsequently, subcloning was carried out with pKK223-3 as a vector, and the length of DNA inserted was reduced to 1.1 kbp. One of the subclones showed very high activity, and the amount of the dehalogenase produced corresponded to about 30% of the soluble protein. From 5 g (wet weight) of cells, 105 mg of dehalogenase was efficiently purified by heat treatment and DEAE-Toyopearl chromatography. This overexpression system provides a large amount of the thermostable enzyme to enable us to study the properties, structure and application of the enzyme.Abbreviations IPTG isopropyl -D-thiogalactopyranoside - KPB potassium phosphate buffer - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl--D-galactoside  相似文献   

2.
The dimeric L -2-haloacid dehalogenase from Pseudomonas sp. YL, (subunit mass, 26179 Da), has been crystallized by vapor diffusion, supplemented by repetitive seeding, against a 50 mM potassium dihydrogenphosphate solution (pH 4.5) containing 15% (w/v) polyethylene glycol 8,000 and 1% (v/v) n-propanol. The crystals belong to the monoclinic space group C2 with unit cell dimensions of a = 92.21 Å, b = 62.78 Angst; c = 50.84 Å, and β = 122.4°, and contain two dehalogenase dimers in the unit cell. They are of good quality and diffract up to 1.5 Å resolution.  相似文献   

3.
Two novel hydrolytic dehalogenases, thermostable L-2-haloacid dehalogenase (L-DEX) inducibly synthesized by 2-chloropropionate (2-CPA) and nonthermostable DL-2-haloacid dehalogenase (DL-DEX) induced by 2-chloroacrylate, were purified to homogeneity from Pseudomonas sp. strain YL. DL-DEX consisted of a monomer with a molecular weight of about 36,000 and catalyzed the dehalogenation of L and D isomers of 2-CPA to produce D- and L-lactates, respectively. It acted on 2-haloalkanoic acids with a carbon chain length of 2 to 4. The maximum activity on DL-2-CPA was found at pH 10.5 and 45 degrees C. L-DEX, composed of two subunits with identical molecular weights of 27,000, catalyzes the dehalogenation of L-2-haloalkanoic acids to produce the corresponding D-2-hydroxyalkanoic acids. The enzyme acts not only on short-carbon-chain 2-haloacids such as monochloroacetate and monoiodoacetate in aqueous solution but also on long-carbon-chain 2-haloacids such as 2-bromohexadecanoate in n-heptane. L-DEX is thermostable: it retained its full activity upon heating at 60 degrees C for 30 min. The pH and temperature optima for dehalogenation of L-2-CPA were 9.5 and 65 degrees C, respectively. L-DEX was strongly inhibited by modification of carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and Woodward reagent K, but DL-DEX was not.  相似文献   

4.
DL-2-Haloacid dehalogenase from Pseudomonas sp. strain 113 (DL-DEX) catalyzes the hydrolytic dehalogenation of both D- and L-2-haloalkanoic acids to produce the corresponding L- and D-2-hydroxyalkanoic acids, respectively, with inversion of the C2 configuration. DL-DEX is a unique enzyme: it acts on the chiral carbon of the substrate and uses both enantiomers as equivalent substrates. We have isolated and sequenced the gene encoding DL-DEX. The open reading frame consists of 921 bp corresponding to 307 amino acid residues. No sequence similarity between DL-DEX and L-2-haloacid dehalogenases was found. However, DL-DEX had significant sequence similarity with D-2-haloacid dehalogenase from Pseudomonas putida AJ1, which specifically acts on D-2-haloalkanoic acids: 23% of the total amino acid residues of DL-DEX are conserved. We mutated each of the 26 residues with charged and polar side chains, which are conserved between DL-DEX and D-2-haloacid dehalogenase. Thr65, Glu69, and Asp194 were found to be essential for dehalogenation of not only the D- but also the L-enantiomer of 2-haloalkanoic acids. Each of the mutant enzymes, whose activities were lower than that of the wild-type enzyme, acted on both enantiomers of 2-haloacids as equivalent substrates in the same manner as the wild-type enzyme. We also found that each enantiomer of 2-chloropropionate competitively inhibits the enzymatic dehalogenation of the other. These results suggest that DL-DEX has a single and common catalytic site for both enantiomers.  相似文献   

5.
The nucleotide sequences of two DNA segments from Pseudomonas sp. strain CBS3 that code for two different haloalkanoic acid halidohydrolases were determined. Two open reading frames with coding capacities of 227 amino acids (corresponding to a molecular mass of 25,401 Da) and 229 amino acids (corresponding to a molecular mass of 25,683 Da) were identified as structural genes of 2-haloalkanoic acid dehalogenases I (dehCI) and II (dehCII) by comparison with the N-terminal amino acid sequences of these enzymes. Comparison of the two sequences revealed 45% homology on the DNA level and 37.5% homology on the amino acid level. No homology with other known protein or nucleotide sequences was found.  相似文献   

6.
Penicillin-binding proteins in Pseudomonas aeruginosa were compared with those of Escherichia coli. These in P. aeruginosa were found exclusively in the cytoplasmic membrane fraction (fraction soluble in sodium N-lauroyl sarcosinate). Sodium dodecyl sulfate/acrylamide gel electrophoresis of the proteins bound to [14C]penicillin G resulted in the separation of six major bands and several minor bands. The proteins in these bands are referred to as proteins 1A, 1B, 2, 3, 4 and 5 in order of increasing electrophoretical mobility. The electrophoretic mobilities and other properties of penicillin-binding proteins in P. aeruginosa and E. coli were compared and correlated. Fundamentally they seem to be very similar in the two bacteria, but proteins 1A and 1B in P. aeruginosa seem to correspond respectively to proteins 1B and 1A in E. coli, and protein 6 seems to be missing or present in only small amount in P. aeruginosa. In addition, the affinities of currently developed beta-lactam antibiotics to each protein of P. aeruginosa and E. coli were examined in relation to the morphological changes of the cells induced by these antibiotics and their antibacterial potencies. Mecillinam showed high affinity to only protein 2 in both P. aeruginosa and E. coli. At a minimal inhibitory concentration, it converted cells of both P. aeruginosa and E. coli from rods to spherical cells, although its minimal inhibitory concentration was much higher for P. aeruginosa than for E. coli.  相似文献   

7.
A monomeric 29 kDa protein showing dehalogenase activity on several halogenated carboxylic acids has been purified from Azotobacter sp. strain RC26. The purified enzyme is specific for the L isomer of optically active 2-haloacids leading to the inversion of the product configuration. The dehalogenase is active at temperatures ranging from 30 to 60C and shows a relatively high affinity for the substrate. The combined thermal stability, high substrate affinity and resistance to enzyme inhibitors found for the RC26 dehalogenase may be relevant for its use as catalyst in biotransformation processes.  相似文献   

8.
The genes encoding the 4-chlorobenzoate dehalogenase of Pseudomonas sp. strain CBS3 were, in an earlier study, cloned in Escherichia coli DH1 with the cosmid vector pPSA843 and then mobilized to the 4-chlorobenzoate dehalogenase minus strain Pseudomonas putida KT2440. In this paper we report on the expression of 4-chlorobenzoate dehalogenase in these clones and on the polypeptide composition of the active enzyme. The dehalogenase activity in whole cells suspended in 3.2 mM 4-chlorobenzoate (30 degrees C) was determined to be approximately 27 units (micromoles 4-hydroxybenzoate produced per minute) per 100 g of E. coli-pPSA843 cells and approximately 28 units per 100 g of P. putida-pPSA843 cells. Dehalogenase activity in fresh cellular extracts (pH 7.4, 30 degrees C) prepared from the E. coli and P. putida clones was unstable and at least 20-fold lower than that observed with the whole cells. The polypeptide components of the dehalogenase were identified by selective expression of the cloned dehalogenase genes and analysis of the gene translation products. Analysis of dehalogenase activity in omega insertion mutants and deletion mutants circumscribed the dehalogenase genes to a 4.8-kilobase (4.8 kb) stretch of the 9.5-kb DNA fragment. Selective expression of the dehalogenase genes from a cloned 4.8-kb DNA fragment in a maxicell system revealed a 30-kDa polypeptide as one of the components of the dehalogenase system. Selective expression of the dehalogenase genes using the T7 polymerase promoter system revealed the 30-kDa polypeptide and 57- and 16-kDa polypeptide products. Determination of which of the three polypeptides were translated in deletion mutants provided the relative positions of the encoding genes on a single DNA strand and the direction in which they are transcribed.  相似文献   

9.
Pseudomonas strain LB400 is able to degrade an unusually wide variety of polychlorinated biphenyls (PCBs). A genomic library of LB400 was constructed by using the broad-host-range cosmid pMMB34 and introduced into Escherichia coli. Approximately 1,600 recombinant clones were tested, and 5 that expressed 2,3-dihydroxybiphenyl dioxygenase activity were found. This enzyme is encoded by the bphC gene of the 2,3-dioxygenase pathway for PCB-biphenyl metabolism. Two recombinant plasmids encoding the ability to transform PCBs to chlorobenzoic acids were identified, and one of these, pGEM410, was chosen for further study. The PCB-degrading genes (bphA, -B, -C, and -D) were localized by subcloning experiments to a 12.4-kilobase region of pGEM410. The ability of recombinant strains to degrade PCBs was compared with that of the wild type. In resting-cell assays, PCB degradation by E. coli strain FM4560 (containing a pGEM410 derivative) approached that of LB400 and was significantly greater than degradation by the original recombinant strain. High levels of PCB metabolism by FM4560 did not depend on the growth of the organism on biphenyl, as it did for PCB metabolism by LB400. When cells were grown with succinate as the carbon source, PCB degradation by FM4560 was markedly superior to that by LB400.  相似文献   

10.
Two genes encoding haloacetate dehalogenases, H-1 and H-2, are closely linked on a plasmid from Moraxella sp. strain B. H-1 predominantly acts on fluoroacetate, but H-2 does not. To elucidate the molecular relationship between the two enzymes, we compared their structural genes. Two restriction fragments of the plasmid DNA were subcloned on M13 phages and their nucleotide sequences were determined. The sequence of each fragment contained an open reading frame that was identified as the structural gene for each of the two dehalogenases on the basis of the following criteria; N-terminal amino acid sequence, amino acid composition, and molecular mass. The genes for H-1 and H-2, designated dehH1 and dehH2, respectively, had different sizes (885 bp and 675 bp) and G+C contents (58.3% and 53.4%). Sequence analysis revealed no homology between the two genes. We concluded that the dehalogenases H-1 and H-2 have no enzyme-evolutionary relationship. The deduced amino acid sequence of the dehH1 gene showed significant similarity to those of three hydrolases of Pseudomonas putida and a haloalkane dehalogenase of Xanthobacter autotrophicus. The dehH2 coding region was sandwiched between two repeated sequences about 1.8 kb long, which might play a part in the frequent spontaneous deletion of dehH2 from the plasmid.  相似文献   

11.
It was previously shown by others that Pseudomonas sp. strain JS150 metabolizes benzene and alkyl- and chloro-substituted benzenes by using dioxygenase-initiated pathways coupled with multiple downstream metabolic pathways to accommodate catechol metabolism. By cloning genes encoding benzene-degradative enzymes, we found that strain JS150 also carries genes for a toluene/benzene-2-monooxygenase. The gene cluster encoding a 2-monooxygenase and its cognate regulator was cloned from a plasmid carried by strain JS150. Oxygen (18O2) incorporation experiments using Pseudomonas aeruginosa strains that carried the cloned genes confirmed that toluene hydroxylation was catalyzed through an authentic monooxygenase reaction to yield ortho-cresol. Regions encoding the toluene-2-monooxygenase and regulatory gene product were localized in two regions of the cloned fragment. The nucleotide sequence of the toluene/benzene-2-monooxygenase locus was determined. Analysis of this sequence revealed six open reading frames that were then designated tbmA, tbmB, tbmC, tbmD, tbmE, and tbmF. The deduced amino acid sequences for these genes showed the presence of motifs similar to well-conserved functional domains of multicomponent oxygenases. This analysis allowed the tentative identification of two terminal oxygenase subunits (TbmB and TbmD) and an electron transport protein (TbmF) for the monooxygenase enzyme. In addition to these gene products, all the tbm polypeptides shared significant homology with protein components from other bacterial multicomponent monooxygenases. Overall, the tbm gene products shared greater similarity with polypeptides from the phenol hydroxylases of Pseudomonas putida CF600, P35X, and BH than with those from the toluene monooxygenases of Pseudomonas mendocina KR1 and Burkholderia (Pseudomonas) pickettii PKO1. The relationship found between the phenol hydroxylases and a toluene-2-monooxygenase, characterized in this study for the first time at the nucleotide sequence level, suggested that DNA probes used for surveys of environmental populations should be carefully selected to reflect DNA sequences corresponding to the metabolic pathway of interest.  相似文献   

12.
L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-delta2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5'-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from DL-ATC and indole.  相似文献   

13.
Abstract The gene coding for a thermostable pullulanase from a thermophile, Thermus sp. strain AMD-33, was cloned in Escherichia coli using pDR540 as a vector. A restriction map was determined for the plasmid pTPS131 which contained the fragment carrying the pullulanase gene. DNA-DNA hybridisation analysis showed that the DNA fragment contained the gene from Thermus sp. strain AMD-33. The strain of E. coli harbouring the plasmid pTPS131 produced most of the pullulanase protein cellularly, whereas Thermus sp. strain AMD-33 produced pullulanase extracellularly. Comparative studies of the enzyme from the thermophile and the plasmid-encoded enzyme in E. coli demonstrated that the optimum temperature and pH of the enzymes were closely similar.  相似文献   

14.
Pseudomonas sp. strain ACP is capable of growth on 1-aminocyclopropane-1-carboxylate (ACC) as a nitrogen source owing to induction of the enzyme ACC deaminase and the subsequent conversion of ACC to alpha-ketobutyrate and ammonia (M. Honma, Agric. Biol. Chem. 49:567-571, 1985). The complete amino acid sequence of purified ACC deaminase was determined, and the sequence information was used to clone the ACC deaminase gene from a 6-kb EcoRI fragment of Pseudomonas sp. strain ACP DNA. DNA sequence analysis of an EcoRI-PstI subclone demonstrated an open reading frame (ORF) encoding a polypeptide with a deduced amino acid sequence identical to the protein sequence determined chemically and a predicted molecular mass of 36,674 Da. The ORF also contained an additional 72 bp of upstream sequence not predicted by the amino acid sequence. Escherichia coli minicells containing the 6-kb clone expressed a major polypeptide of the size expected for ACC deaminase which was reactive with ACC deaminase antiserum. Furthermore, a lacZ fusion with the ACC deaminase ORF resulted in the expression of active enzyme in E. coli. ACC is a key intermediate in the biosynthesis of ethylene in plants, and the use of the ACC deaminase gene to manipulate this pathway is discussed.  相似文献   

15.
The plasmidic chromate resistance genes chrBAC from Shewanella sp. strain ANA-3 were transferred to Escherichia coli . Expression of chrA alone, on a high- or low-copy number plasmid, conferred increased chromate resistance. In contrast, expression of the complete operon chrBAC on a high-copy number plasmid did not result in a significant increase in resistance, although expression on a low-copy number plasmid made the cells up to 10-fold more resistant to chromate. The chrA gene also conferred increased chromate resistance when expressed in Pseudomonas aeruginosa . The chrR gene from the P. aeruginosa chromosome was necessary for full chromate resistance conferred by chrA . A diminished chromate uptake in cells expressing the chrA gene suggests that chromate resistance is due to chromate efflux.  相似文献   

16.
Ralstonia sp. strain U2 metabolizes naphthalene via gentisate to central metabolites. We have cloned and sequenced a 21.6-kb region spanning the nag genes. Upstream of the pathway genes are nagY, homologous to chemotaxis proteins, and nagR, a regulatory gene of the LysR family. Divergently transcribed from nagR are the genes for conversion of naphthalene to gentisate (nagAaGHAbAcAdBFCQED) (S. L. Fuenmayor, M. Wild, A. L. Boyes, and P. A. Williams, J. Bacteriol. 180:2522-2530, 1998), which except for the insertion of nagGH, encoding the salicylate 5-hydroxylase, are homologous to and in the same order as the genes in the classical upper pathway operon described for conversion of naphthalene to salicylate found in the NAH7 plasmid of Pseudomonas putida PpG7. Downstream of nahD is a cluster of genes (nagJIKLMN) which are probably cotranscribed with nagAaGHAbAcAdBFCQED as a single large operon. By cloning into expression vectors and by biochemical assays, three of these genes (nagIKL) have been shown to encode the enzymes involved in the further catabolism of gentisate to fumarate and pyruvate. NagI is a gentisate 1,2-dioxygenase which converts gentisate to maleylpyruvate and is also able to catalyze the oxidation of some substituted gentisates. NagL is a reduced glutathione-dependent maleylpyruvate isomerase catalyzing the isomerization of maleylpyruvate to fumarylpyruvate. NagK is a fumarylpyruvate hydrolase which hydrolyzes fumarylpyruvate to fumarate and pyruvate. The three other genes (nagJMN) have also been cloned and overexpressed, but no biochemical activities have been attributed to them. NagJ is homologous to a glutathione S-transferase, and NagM and NagN are proteins homologous to each other and to other proteins of unknown function. Downstream of the operon is a partial sequence with homology to a transposase.  相似文献   

17.
A new enzyme, DL-2-haloacid dehalogenase, was isolated and purified to homogeneity from the cells of Pseudomonas sp. strain 113. This enzyme catalyzed non-stereospecific dehalogenation of both of the optical isomers of 2-chloropropionate through an SN2 type of reaction; L- and D-lactates were formed from D- and L-2-chloropropionates, respectively. The enzyme acted on 2-halogenated aliphatic carboxylic acids whose carbon chain lengths were less than five. It also dehalogenated trichloroacetate to form oxalate and showed maximum activity at pH 9.5. The Michaelis constants for substrates were as follows: 5.0 mM for monochloroacetate, 1.1 mM for L-2-chloropropionate, and 4.8 mM for D-2-chloropropionate. DL-2-Haloacid dehalogenase was inhibited by HgCl2, ZnSO4, and MnSO4, but was not affected by thiol reagents, such as p-chloromercuribenzoate and iodoacetamide. This enzyme had a molecular weight of about 68,000 and appeared to be composed of two subunits identical in molecular weight.  相似文献   

18.
Phytase is used as a feed additive for degradation of antinutritional phytate, and the enzyme is desired to be highly thermostable for it to withstand feed formulation conditions. A Bacillus sp. MD2 showing phytase activity was isolated, and the phytase encoding gene was cloned and expressed in Escherichia coli. The recombinant phytase exhibited high stability at temperatures up to 100°C. A higher enzyme activity was obtained when the gene expression was done in the presence of calcium chloride. Production of the enzyme by batch- and fed-batch cultivation in a bioreactor was studied. In batch cultivation, maintaining dissolved oxygen at 20–30% saturation and depleting inorganic phosphate below 1 mM prior to induction by IPTG resulted in over 10 U/ml phytase activity. For fed–batch cultivation, glucose concentration was maintained at 2–3 g/l, and the phytase expression was increased to 327 U/ml. Induction using lactose during fed-batch cultivation showed a lag phase of 4 h prior to an increase in the phytase activity to 71 U/ml during the same period as IPTG-induced production. Up to 90% of the total amount of expressed phytase leaked out from the E. coli cells in both IPTG- and lactose-induced fed-batch cultivations.  相似文献   

19.
The identification of a gene (yiaE) encoding 2-ketoaldonate reductase (2KR) in our previous work led to the hypothesis that Escherichia coli has other ketogluconate reductases including 2, 5-diketo-D-gluconate reductase (25DKGR) and to study of the related ketogluconate metabolism. By using the deduced amino acid sequences of 5-diketo-D-gluconate reductase (5KDGR) of Gluconobacter oxydans and 25DKGR of Corynebacterium sp., protein databases were screened to detect homologous proteins. Among the proteins of E. coli, an oxidoreductase encoded by yjgU and having 56% similarity to 5KDGR of G. oxydans and two hypothetical oxidoreductases encoded by yqhE and yafB and having 49.8 and 42% similarity, respectively, to 25DKGR of Corynebacterium sp. were detected. Recently, the yjgU gene was identified as encoding 5KDGR and renamed idnO (C. Bausch, N. Peekhaus, C. Utz, T. Blais, E. Murray, T. Lowary, and T. Conway, J. Bacteriol. 180:3704-3710, 1998). The pathways involved in the metabolism of ketogluconate by E. coli have been predicted by biochemical analysis of purified enzymes and chemical analysis of the pathway intermediates. The gene products of yqhE and yafB were identified as 25DKGR-A, and 25DKGR-B, respectively, catalyzing the reduction of 25KDG to 2-keto-L-gulonate (2KLG). The native 25DKGR-A, 25DKGR-B, and 5KDGR had apparent molecular weights of about 30,000, 30,000, and 54,000, respectively. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, all three enzymes showed protein bands with a molecular weight of about 29,000, which indicated that 25DKGR-A, 25DKGR-B, and 5KDGR may exist as monomeric, monomeric, and dimeric proteins, respectively. The optimum pHs for reduction were 7.5, 7.0, and 8.0, respectively. The 5KDGR was active with NADH, whereas 25DKGR-A and 25DKGR-B were active with NADPH as a preferred electron donor. 25DKG can be converted to 5KDG by 2KR, which is then reduced to D-gluconate by 5KDGR. The pathways were compared with those of Erwinia sp. and Corynebacterium sp. A BLAST search of published and incomplete microbial genome sequences revealed that the ketogluconate reductases and their related metabolism may be widespread in many species.  相似文献   

20.
Nuclear bodies were isolated from Escherichia coli spheroplasts by two different lysis procedures. Their lipid and protein content and the superhelix density was measured. The preparations differed mainly in respect to the amount of the attached membrane material, which seems to be an essential factor in maintaining the stability of the nuclear bodies. The superhelix density was found to be higher than that of naturally occurring, covalently closed, circular deoxyribonucleic acids. The influence of the preparative method on the superhelicity was comparatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号