首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 micro M and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [(14)C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.  相似文献   

2.
Isopentenyl diphosphate (IPP), which is produced from mevalonic acid or other nonmevalonic substrates, is the universal precursor of isoprenoids in nature. Despite the presence of several isoprenoid compounds in plastids, enzymes of the mevalonate pathway leading to IPP formation have never been isolated or identified to our knowledge. We now describe the characterization of two pepper (Capsicum annuum L.) cDNAs, CapTKT1 and CapTKT2, that encode transketolases having distinct and dedicated specificities. CapTKT1 is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whereas CapTKT2 initiates the synthesis of isoprenoids in plastids via the nonmevalonic acid pathway. From pyruvate and glyceraldehyde-3-phosphate, CapTKT2 catalyzes the formation of 1-deoxy-xylulose-5-phosphate, the IPP precursor. CapTKT1 is almost constitutively expressed during the chloroplast-to-chromoplast transition, whereas CapTKT2 is overexpressed during this period, probably to furnish the IPP necessary for increased carotenoid biosynthesis. Because deoxy-xylulose phosphate is shared by the plastid pathways of isoprenoid, thiamine (vitamin B1), and pyridoxine (vitamin B6) biosynthesis, our results may explain why albino phenotypes usually occur in thiamine-deficient plants.  相似文献   

3.
4.
Isopentenyl diphosphate isomerase (IPP isomerase) in many organisms and in plastids is central to isoprenoid synthesis and involves the conversion between IPP and dimethylallyl diphosphate (DMAPP). It is shown that Synechocystis PCC6803 is deficient in IPP isomerase activity, consistent with the absence in its genome of an obvious homologue for the enzyme. Incorporation of [1-(14)C]IPP in cell extracts, primarily into C(20), occurs only upon priming with DMAPP in Synechocystis PCC6803 and in Synechococcus PCC7942. Isoprenoid synthesis in these cyanobacteria does not appear to involve interconversion of IPP and DMAPP, raising the possibility that they are not within the plastid evolutionary lineage.  相似文献   

5.
Transport of isoprenoid intermediates across chloroplast envelope membranes   总被引:2,自引:0,他引:2  
The common precursor for isoprenoid biosynthesis in plants, isopentenyl diphosphate (IPP), is synthesized by two pathways, the cytosolic mevalonate pathway and the plastidic 1-deoxy-D-xylulose 5-phosphate/methylerythritol phosphate (DOXP/MEP) pathway. The DOXP/MEP pathway leads to the formation of various phosphorylated intermediates, including DOXP, 4-hydroxy-3-methylbutenyl diphosphate (HMBPP), and finally IPP. There is ample evidence for metabolic cross-talk between the two biosynthetic pathways. The present study addresses the question whether isoprenoid intermediates could be exchanged between both compartments by members of the plastidic phosphate translocator (PT) family that all mediate a counter-exchange between inorganic phosphate and various phosphorylated compounds. Transport experiments using intact chloroplasts, liposomes containing reconstituted envelope membrane proteins or recombinant PT proteins showed that HMBPP is not exchanged between the cytosol and the chloroplasts and that the transport of DOXP is preferentially mediated by the recently discovered plastidic transporter for pentose phosphates, the xylulose 5-phosphate translocator. Evidence is presented that transport of IPP does not proceed via the plastidic PTs although IPP transport is strictly dependent on various phosphorylated compounds on the opposite side of the membrane. These phosphorylated trans compounds are, in part, also used as counter-substrates by the plastidic PTs but appear to only trans activate IPP transport without being transported.  相似文献   

6.
Isopentenyl/dimethylallyl diphosphate isomerase (IPI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the universal C(5) units of isoprenoids. In plants, IPP and DMAPP are synthesized via the cytosolic mevalonate (MVA) and plastidic methylerythritol phosphate (MEP) pathways, respectively. However, the role of IPI in each pathway and in plant development is unknown due to a lack of genetic studies using IPI-defective mutants. Here, we show that the atipi1atipi2 double mutant, which is defective in two Arabidopsis IPI isozymes, exhibits dwarfism and male sterility under long-day conditions and decreased pigmentation under continuous light, whereas the atipi1 and atipi2 single mutants are phenotypically normal. We also show that the sterol and ubiquinone levels in the double mutant are <50% of those in wild-type plants, and that the male-sterile phenotype is chemically complemented by squalene, a sterol precursor. In vivo isotope labeling experiments using the atipi1atipi2 double mutant revealed a decrease in the incorporation of MVA (in its lactone form) into sterols, with no decrease in the incorporation of MEP pathway intermediates into tocopherol. These results demonstrate a critical role for IPI in isoprenoid biosynthesis via the MVA pathway, and they imply that IPI is essential for the maintenance of appropriate levels of IPP and DMAPP in different subcellular compartments in plants.  相似文献   

7.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II enzyme was recently discovered in Streptomyces sp. strain CL190. Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes a putative type II IPP isomerase. A plasmid-encoded copy of the ORF complemented IPP isomerase activity in vivo in Salmonella enterica serovar Typhimurium strain RMC29, which contains chromosomal knockouts in the genes for type I IPP isomerase (idi) and 1-deoxy-D-xylulose 5-phosphate (dxs). The dxs gene was interrupted with a synthetic operon containing the Saccharomyces cerevisiae genes erg8, erg12, and erg19 allowing for the conversion of mevalonic acid to IPP by the mevalonate pathway. His6-tagged M. thermautotrophicus type II IPP isomerase was produced in Escherichia coli and purified by Ni2+ chromatography. The purified protein was characterized by matrix-assisted laser desorption ionization mass spectrometry. The enzyme has optimal activity at 70 degrees C and pH 6.5. NADPH, flavin mononucleotide, and Mg2+ are required cofactors. The steady-state kinetic constants for the archaeal type II IPP isomerase from M. thermautotrophicus are as follows: K(m), 64 microM; specific activity, 0.476 micromol mg(-1) min(-1); and k(cat), 1.6 s(-1).  相似文献   

8.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase is a key enzyme in the biosynthesis of isoprenoids. The reaction involves protonation and deprotonation of the isoprenoid unit and proceeds through a carbocationic transition state. Analysis of the crystal structures (2 A) of complexes of Escherichia coli IPP.DMAPPs isomerase with a transition state analogue (N,N-dimethyl-2-amino-1-ethyl diphosphate) and a covalently attached irreversible inhibitor (3,4-epoxy-3-methyl-1-butyl diphosphate) indicates that Glu-116, Tyr-104, and Cys-67 are involved in the antarafacial addition/elimination of protons during isomerization. This work provides a new perspective about the mechanism of the reaction.  相似文献   

9.
An alternative mevalonate-independent pathway for isoprenoid biosynthesis has been recently discovered in eubacteria (including Escherichia coli) and plant plastids, although it is not fully elucidated yet. In this work, E. coli cells were engineered to utilize exogenously provided mevalonate and used to demonstrate by a genetic approach that branching of the endogenous pathway results in separate synthesis of the isoprenoid building units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In addition, the IPP isomerase encoded by the idi gene was shown to be functional in vivo and to represent the only possibility for interconverting IPP and DMAPP in this bacterium.  相似文献   

10.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

11.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced greenish-yellow, easily bleached colonies. Insertions in the coding region of lytB were lethal. Supplementation of the culture medium with the alcohol analogues of IPP and DMAPP (3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol) completely alleviated the growth impairment of the mutant. The Synechocystis lytB gene and a lytB cDNA from the flowering plant Adonis aestivalis were each found to significantly enhance accumulation of carotenoids in Escherichia coli engineered to produce these colored isoprenoid compounds. When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied. In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no more effective in enhancing carotenoid accumulation than ipi alone, indicating that the ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB.  相似文献   

12.
The role of peroxisomes in isoprenoid metabolism, especially in plants, has been questioned in several reports. A recent study of Sapir-Mir et al.1 revealed that the two isoforms of isopentenyl diphosphate (IPP) isomerase, catalyzing the isomerisation of IPP to dimethylallyl diphosphate (DMAPP) are found in the peroxisome. In this addendum, we provide additional data describing the peroxisomal localization of 5-phosphomevalonate kinase and mevalonate 5-diphosphate decarboxylase, the last two enzymes of the mevalonic acid pathway leading to IPP.2 This finding was reinforced in our latest report showing that a short isoform of farnesyl diphosphate, using IPP and DMAPP as substrates, is also targeted to the organelle.3 Therefore, the classical sequestration of isoprenoid biosynthesis between plastids and cytosol/ER can be revisited by including the peroxisome as an additional isoprenoid biosynthetic compartment within plant cells.  相似文献   

13.
Zhang C  Liu L  Xu H  Wei Z  Wang Y  Lin Y  Gong W 《Journal of molecular biology》2007,366(5):1437-1446
Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.  相似文献   

14.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase catalyses a crucial activation step in the isoprenoid biosynthesis pathway. This enzyme is responsible for the isomerization of the carbon-carbon double bond of IPP to create the potent electrophile DMAPP. DMAPP then alkylates other molecules, including IPP, to initiate the extraordinary variety of isoprenoid compounds found in nature. The crystal structures of free and metal-bound Escherichia coli IPP isomerase reveal critical active site features underlying its catalytic mechanism. The enzyme requires one Mn(2+) or Mg(2+) ion to fold in its active conformation, forming a distorted octahedral metal coordination site composed of three histidines and two glutamates and located in the active site. Two critical residues, C67 and E116, face each other within the active site, close to the metal-binding site. The structures are compatible with a mechanism in which the cysteine initiates the reaction by protonating the carbon-carbon double bond, with the antarafacial rearrangement ultimately achieved by one of the glutamates involved in the metal coordination sphere. W161 may stabilize the highly reactive carbocation generated during the reaction through quadrupole- charge interaction.  相似文献   

15.
Treatment of a Cinchona robusta How. cell suspension culture with a homogenate of Phytophthora cinnamomi resulted in cessation of growth and a rapid induction of the biosynthesis of anthraquinone-type phytoalexins. The strongest induction of anthraquinone biosynthesis was obtained when the elicitor was added in the early growth phase of the growth cycle. The accumulation of anthraquinones was accompanied by a tri-phasic response in the activity of isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2): phase I was characterised by a rapid induction of activity, reaching a maximum at 12 h after elicitation. During phase II, IPP isomerase rapidly decreased to levels below those found in untreated cells. At phase III, IPP isomerase activity increased again, reaching a second maximum at about 72 h after elicitation. During phase I, the activity of farnesyl diphosphate synthase (EC 2.5.1.10) was found to be suppressed. Extraction and assay conditions were optimised for IPP isomerase. The presence of Mn2+ in the incubation buffer resulted in a marked increase in the activity of the enzymes obtained from cells in phase I. The induction of IPP isomerase in combination with a concomitant inhibition of farnesyl diphosphate synthase might result in an efficient channeling of C5-precursors into phytoalexin biosynthesis. Received: 23 August 1996 / Accepted: 20 March 1997  相似文献   

16.
Isopentenyl diphosphate isomerase catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, archaebacteria, and some bacteria, IPP is synthesized from acetyl coenzyme A by the mevalonate pathway. The subsequent isomerization of IPP to DMAPP activates the five-carbon isoprene unit for subsequent prenyl transfer reactions. In Escherichia coli, the isoprene unit is synthesized from pyruvate and glyceraldehyde-3-phosphate by the recently discovered nonmevalonate pathway. An open reading frame (ORF696) encoding a putative IPP isomerase was identified in the E. coli chromosome at 65.3 min. ORF696 was cloned into an expression vector; the 20.5 kDa recombinant protein was purified in three steps, and its identity as an IPP isomerase was established biochemically. The gene for IPP isomerase, idi, is not clustered with other known genes for enzymes in the isoprenoid pathway. E. coli FH12 was constructed by disruption of the chromosomal idi gene with the aminoglycoside 3'-phosphotransferase gene and complemented by the wild-type idi gene on plasmid pFMH33 with a temperature-sensitive origin of replication. FH12/pFMH33 was able to grow at the restrictive temperature of 44 degrees C and FH12 lacking the plasmid grew on minimal medium, thereby establishing that idi is a nonessential gene. Although the V(max) of the bacterial protein was 20-fold lower than that of its yeast counterpart, the catalytic efficiencies of the two enzymes were similar through a counterbalance in K(m)s. The E. coli protein requires Mg(2+) or Mn(2+) for activity. The enzyme contains conserved cysteine and glutamate active-site residues found in other IPP isomerases.  相似文献   

17.
Isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP isomerase) is an enzyme in the isoprenoid biosynthetic pathway which catalyzes the interconversion of the primary five-carbon homoallylic and allylic diphosphate building blocks. We report a substantially improved procedure for purification of this enzyme from Saccharomyces cerevisiae. An amino-terminal sequence (35 amino acids) was obtained from a highly purified preparation of IPP isomerase. Oligonucleotide probes based on the protein sequence were used to isolate the structural gene encoding IPP isomerase from a yeast lambda library. The cloned gene encodes a 33,350-dalton polypeptide of 288 amino acids. A 3.5-kilobase EcoRI fragment containing the gene was subcloned into the yeast shuttle vector YRp17. Upon transformation with plasmids containing the insert, a 5-6-fold increase in IPP isomerase activity was seen in transformed cells relative to YRp17 controls, confirming the identity of the cloned gene. This is the first reported isolation of the gene for IPP isomerase.  相似文献   

18.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

19.
The mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways for isoprenoid biosynthesis both culminate in the production of the two-five carbon prenyl diphosphates: dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). These are the building blocks for higher isoprenoids, including many that have industrial and pharmaceutical applications. With growing interest in producing commercial isoprenoids through microbial engineering, reports have appeared of toxicity associated with the accumulation of prenyl diphosphates in Escherichia coli expressing a heterologous MVA pathway. Here we explored whether similar prenyl diphosphate toxicity, related to MEP pathway flux, could also be observed in the bacterium Bacillus subtilis. After genetic and metabolic manipulations of the endogenous MEP pathway in B. subtilis, measurements of cell growth, MEP pathway flux, and DMAPP contents suggested cytotoxicity related to prenyl diphosphate accumulation. These results have implications as to understanding the factors impacting isoprenoid biosynthesis in microbial systems.  相似文献   

20.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号