首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
《BBA》1986,851(3):407-415
Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore.  相似文献   

2.
Tin (Sn4+) and zinc (Zn2+) derivatives of horse heart cytochrome c have been prepared and their optical spectra have been characterized. Zinc cytochrome c has visible absorption maxima at 549 and 585 nm and Soret absorption at 423 nm. Tin cytochrome c shows visible absorption maxima at 536 and 574 nm and Soret absorption at 410 nm. Unlike iron cytochrome c in which the emission spectrum of the porphyrin is almost completely quenched by the central metal, the zinc and tin derivatives of cytochrome c are both fluorescent and phosphorescent. The fluorescence maxima of zinc cytochrome c are at 590 and 640 nm and the fluorescence lifetime is 3.2 ns. The fluorescence maxima of Sn cytochrome are at 580 and 636 nm and the fluorescence lifetime is under 1 ns. The quantum yield of fluorescence is Zn greater than Sn while the quantum yield of phosphorescence is Sn greater than Zn. at 77 K the fluorescence and phosphorescence emission spectra of Sn and Zn cytochrome c show evidence of resolution into vibrational bands. The best resolved bands occur at frequency differences 750 cm-1 and 1540--1550 cm-1 from the O-O transition. These frequencies correspond with those obtained by resonance Raman spectroscopy for in-plane deformations of the porphyrin macrocycle.  相似文献   

3.
Two dyads containing a naphthalene-like chromophore linked to a pyrrolidine-derived moiety, namely (S,S)- and (R,S)-NPX-PYR, have been synthesised by esterification of (S)- or (R)-naproxen (NPX) with (S)-N-methyl-2-pyrrolidinemethanol (PYR) and submitted to photophysical studies (steady-state and time-resolved fluorescence, as well as laser flash photolysis). The emission spectra of the dyads in acetonitrile were characterised by a typical band centred at 350 nm, identical to that of the reference compound (S)-NPX. However the intensities were clearly different, revealing a significant intramolecular quenching in the dyads, as well as a remarkable stereodifferentiation (factor of 1.6). Accordingly, the fluorescence lifetimes of the two dyads were different from each other and markedly shorter than that of (S)-NPX. The quenching mechanism is intramolecular electron transfer, that is thermodynamically favoured. Exciplex formation, that is nearly thermoneutral, does not compete efficiently. The electron transfer rate constants for (S,S)- and (R,S)-(NPX-PYR) were 1.8 x 10(8) and 2.8 x 10(8) s(-1), respectively. By contrast, no significant intramolecular quenching was observed for the excited triplet states (lambda(max)= 440 nm), generated by laser flash photolysis; this is in agreement with the fact that intramolecular electron transfer is thermodynamically disfavoured, due to the lower energy of excited triplets.  相似文献   

4.
A.R. Holzwarth  J. Wendler  W. Wehrmeyer 《BBA》1983,724(3):388-395
By applying the single-photon timing method the fluorescence kinetics of phycocyanin 645 from Chroomonas sp. has been measured as a function of both the excitation and emission wavelength using low-intensity excitation. The fluorescence kinetics were found to be dominated by a fast (15 ps) and a slow (1.44 ns) decay component. The relative yields and amplitudes of these components depended strongly on both the excitation and emission wavelengths. A component with a small relative amplitude and a lifetime (τ) in the range of 360–680 ps has been found as well. The fast decay component is attributed to intramolecular energy transfer from sensitizing to fluorescing chromophores. Our results are discussed in relation to a chromophore coupling model suggested previously (Jung, J., Song, P.-S., Paxton, R.J., Edelstein, M.S., Swanson, R. and Hazen, E.E. (1980) Biochemistry 19, 24–32).  相似文献   

5.
Sun Y  Castner EW  Lawson CL  Falkowski PG 《FEBS letters》2004,570(1-3):175-183
Two novel colored fluorescent proteins were cloned and biophysically characterized from zooxanthellate corals (Anthozoa). A cyan fluorescent protein derived from the coral Montastrea cavernosa (mcCFP) is a trimeric complex with strong blue-shifted excitation and emission maxima at 432 and 477 nm, respectively. The native complex has a fluorescence lifetime of 2.66 ± 0.01 ns and an inferred absolute quantum yield of 0.385. The spectroscopic properties of a green fluorescent protein cloned from Meandrina meandrites (mmGFP) resemble the commercially available GFP derived originally from the hydrozoan Aequorea victoria (avGFP). mmGFP is a monomeric protein with an excitation maximum at 398 nm and an emission maximum at 505 nm, a fluorescence lifetime of 3.10 ± 0.01 ns and an absolute quantum yield of 0.645. Sequence homology with avGFP and the red fluorescent protein (DsRed) indicates that the proteins adopt the classic β-barrel configuration with 11 β-strands. The three amino acid residues that comprise the chromophore are QYG for mcCFP and TYG for mmGFP, compared with SYG for avGFP. A single point mutation, Ser-110 to Asn, was introduced into mmGFP by random mutagenesis. Denaturation and refolding experiments showed that the mutant has reduced aggregation, increased solubility and more efficient refolding relative to the wild type. Time-resolved emission lifetimes and anisotropies suggest that the electronic structure of the chromophore is highly dependent on the protonation state of adjoining residues.  相似文献   

6.
Multiphoton excitation microscopy at 730 nm and 960 nm was used to image in vivo human skin autofluorescence from the surface to a depth of approximately 200 microm. The emission spectra and fluorescence lifetime images were obtained at selected locations near the surface (0-50 microm) and at deeper depths (100-150 microm) for both excitation wavelengths. Cell borders and cell nuclei were the prominent structures observed. The spectroscopic data suggest that reduced pyridine nucleotides, NAD(P)H, are the primary source of the skin autofluorescence at 730 nm excitation. With 960 nm excitation, a two-photon fluorescence emission at 520 nm indicates the presence of a variable, position-dependent intensity component of flavoprotein. A second fluorescence emission component, which starts at 425 nm, is observed with 960-nm excitation. Such fluorescence emission at wavelengths less than half the excitation wavelength suggests an excitation process involving three or more photons. This conjecture is further confirmed by the observation of the super-quadratic dependence of the fluorescence intensity on the excitation power. Further work is required to spectroscopically identify these emitting species. This study demonstrates the use of multiphoton excitation microscopy for functional imaging of the metabolic states of in vivo human skin cells.  相似文献   

7.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

8.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

9.
Fluorescence excitation and emission spectra, relative fluorescence quantum yield phi r and fluorescence lifetime tau of methyl 8-(2-anthroyl)-octanoate have been studied in a set of organic solvents covering a large scale of polarity and in the presence of water. In this probe, the 2-anthroyl chromophore exhibits quite remarkable and unique fluorescence properties. Thus, when going from n-hexane to methanol, the maximum emission wavelength lambda em max shifts from 404 nm to 492 nm while phi r and tau increase from 1 to 17.7 and from 0.91 ns to 13.5 ns, respectively. These increments are still more accentuated in the presence of water with estimated values of 526 nm for lambda em max, 27 for phi r and 20 ns for tau in this solvent. Because of the presence of a keto group which is a hydrogen bond acceptor and which can conjugate with the aromatic ring so as to provide the chromophore with a high dipole moment, the fluorescence properties of the probe strongly depend on the polarity of the surrounding medium. They can be accounted for in terms of general solvent effects (dipolar solute/solvent interactions) in the presence of aprotic solvents and in terms of specific solvent effects (hydrogen bonding) in protic solvents. Such properties of solvatochromism make the 2-anthroyl chromophore, after 8-(2-anthroyl)octanoic acid has been attached to phospholipids (E. Perochon and J.F. Tocanne (1991) Chem. Phys. Lipids 58, 7-17) a potential tool for studying microenvironmental polarity in biological membranes.  相似文献   

10.
The fluorescence of indole in glycerol decays exponentially at both 22° and ?80°C for 280 nm excitation. Under 296 nm excitation the 22°C emission decay is exponential, but at ?80°C, a second shorter lived (1.3 ns) component is also detected. The relevance of this result to the determination of protein fluorescence lifetime is described.  相似文献   

11.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

12.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (10(13) photons.cm-2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 10(13)--10(16) photons-cm-2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

13.
A dysprosium‐zinc porphyrin, [DyZn(TPPS)H3O]n (1) (TPPS = tetra(4‐sulfonatophenyl)porphyrin), was prepared through solvothermal reactions and structurally characterized by single‐crystal X‐ray diffraction analyses. Complex 1 features a three‐dimensional (3‐D) porous open framework that is thermally stable up to 400 °C. Complex 1 displays a void space of 215 Å3, occupying 9.2% of the unit cell volume. The fluorescence spectra reveal that it shows an emission band in the red region. The fluorescence lifetime is 39 µsec and the quantum yield is 1.7%. The cyclic voltammetry (CV) measurement revealed one quasi‐reversible wave with E1/2 = 0.30 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Plasmodium falciparum triosephosphate isomerase (PfTIM) contains two tryptophan residues, W11 and W168. One is positioned in the interior of the protein, and the other is located on the active-site loop 6. Two single-tryptophan mutants, W11F and W168F, were constructed to evaluate the contributions of each chromophore to the fluorescence of the wild-type (wt) protein and to probe the utility of the residues as spectroscopic reporters. A comparative analysis of the fluorescence spectra of PfTIMwt and the two mutant proteins revealed that W168 possesses an unusual, blue-shifted emission (321 nm) and exhibits significant red-edge excitation shift of fluorescence. In contrast, W11 emits at 332 nm, displays no excitation dependence of fluorescence, and behaves like a normal buried chromophore. W168 has a much shorter mean lifetime (2.7 ns) than W11 (4.6 ns). The anomalous fluorescence properties of W168 are abolished on unfolding of the protein in guanidinium chloride (GdmCl) or at low pH. Analysis of the tryptophan environment using a 1.1-A crystal structure established that W168 is rigidly held by a complex network of polar interactions including a strong hydrogen bond from Y164 to the indole NH group. The environment is almost completely polar, suggesting that electrostatic effects determine the unusually low emission wavelength of W168. To our knowledge this is a unique observation of a blue-shifted emission from a tryptophan in a polar environment in the protein. The wild-type and mutant proteins show similar levels of enzymatic activity and secondary and tertiary structure. However, the W11F mutation appreciably destabilizes the protein to unfolding by urea and GdmCl. The fluorescence of W168 is shown to be extremely sensitive to binding of the inhibitor, 2-phosphoglycolic acid.  相似文献   

15.
A low molecular weight protein (approximately 25,000 D) exhibiting a yellow fluorescence emission peaking at approximately 540 nm was isolated from Vibrio fischeri (strain Y-1) and purified to apparent homogeneity. FMN is the chromophore, but it exhibits marked red shifts in both the absorption (lambda max = 380, 460 nm) and the fluorescence emission. When added to purified luciferase from the same strain, which itself catalyzes an emission of blue-green light (lambda max approximately 495 nm), this protein induces a bright yellow luminescence (lambda max approximately 540 nm); this corresponds to the emission of the Y-1 strain in vivo. This yellow bioluminescence emission is thus ascribed to the interaction of these two proteins, and to the excitation of the singlet FMN bound to this fluorescent protein.  相似文献   

16.
Two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM) and emission spectral imaging (ESI) are powerful tools for fluorescence resonance energy transfer (FRET) measurement. In this study, we use these two techniques to analyze caspase-3 activation inside single living cells during anticancer drug-induced human lung adenocarcinoma (ASTC-a-1) cell death. TPE-ESI of SCAT3, a caspase-3 indicator based on FRET, was performed inside single living cell stably expressing SCAT3. The TPE-ESI measurement was performed using 780 nm excitation which was considered to selectively excite the donor ECFP of SCAT3 by measuring the emission ratio of 526 to 476 nm. The emission peak at 526 nm disappeared and that of 476 nm increased after STS or bufalin treatment, but taxol treatment did not induce a significant change for the SCAT3 emission spectra, indicating that caspase-3 was activated during STS- or bufalin-induced cell apoptosis, but was not involved in taxol-induced PCD. Fluorescence lifetime of ECFP inside living cells was acquired using FLIM. The lifetime of ECFP was the same as that of the control group after taxol treatment, but increased from 1.83 ± 0.02 to 2.05 ± 0.03 and 1.90 ± 0.03 ns, respectively after STS and bufalin treatment, which agree with the results obtained using TPE-ESI. Taken together, TPE-FLIM and ESI analysis were proved to be valuable approaches for monitoring caspase-3 activation inside single living cells. W. Pan and J. Qu contributed equally to this study.  相似文献   

17.
PS Ⅱ reaction center D1/D2/Cyt b-559 purified from chloroplasts of spinach has four components of fluorescence decaying with lifetimes of 1.0 ns, 5.9 ns,24 ns,and 73 ns whose fractions to total fluorescence yield are 0. 05,0.34,0. 35 and 0.26 respectively. The fluorescence emission spectra of these lifetime components are closely overlapping, and only one peak is shown in steady state emission spectrum. Based on the hardware analysis of phase fluorometry,by selection of the detector phase angle,the emission from various components could be individually suppressed. If the 5.9 ns component was suppressed, the emission spectrum was red-shifted. On the contrary, the emission spectrum was blue-shifted when 73 ns component was suppressed. Based on the software analysis, the individual emission spectra were resolved with three lifetime components by measuring phase and modulation data at various wavelength. Compared with steady state spectrum,the emission maximum wavelength of 5.9 ns component was blue-shifted from 68nm to 680 nm,but those of 24 ns and 73 ns components were red-shifted to 685 nm and 683 nm respectively.  相似文献   

18.
E Pérochon  A Lopez  J F Tocanne 《Biochemistry》1992,31(33):7672-7682
Through steady-state and time-resolved fluorescence experiments, the polarity of the bilayers of egg phosphatidylcholine vesicles was studied by means of the solvatochromic 2-anthroyl fluorophore which we have recently introduced for investigating the environmental micropolarity of membranes and which was incorporated synthetically in phosphatidylcholine molecules (anthroyl-PC) in the form of 8-(2-anthroyl)octanoic acid. Fluorescence quenching experiments carried out with N,N-dimethylaniline and 12-doxylstearic acid as quenchers showed that the 2-anthroyl chromophore was located in depth in the hydrophobic region of the lipid bilayer corresponding to the C9-C16 segment of the acyl chains. Steady-state fluorescence spectroscopy revealed a nonstructured and red-shifted (lambda em(max) = 464 nm) spectrum for the probe in egg-PC bilayers, which greatly differed from the structured and blue (lambda em(max) = 404 nm) spectrum the fluorophore was shown to display in n-hexane. While the fluorescence decays of the fluorophore in organic solvents were monoexponential, three exponentials were required to account for the fluorescence decays of anthroyl-PC in egg-PC vesicles, with average characteristic times of 1.5 ns, 5.5 ns, and 20 ns. These lifetime values were independent of the emission wavelength used. Addition of cholesterol to the lipid did not alter these tau values. One just observed an increase in the fractional population of the 1.5-ns short-living species detrimental to the population of the 20-ns long-living ones. These observations enabled time-resolved fluorescence spectroscopy measurements to be achieved in the case of the 1/1 (mol/mol) egg-PC/cholesterol mixture. Three distinct decay associated spectra (DAS) were recorded, with maximum emission wavelengths, respectively, of 410 nm, 440 nm, and 477 nm for the 1.5-ns, 6-ns, and 20-ns lifetimes found in this system. On account of the properties and the polarity scale previously established for the 2-anthroyl chromophore in organic solvents, these data strongly suggest the occurrence of three distinct excited states for anthroyl-PC in egg-PC bilayers, corresponding to three environments for the 2-anthroyl chromophore, differing in polarity. The lifetime of 1.5 ns and the corresponding structured and blue (lambda em(max) = 410 nm) DAS account for a hydrophobic environment, with an apparent dielectric constant of 2, which is that expected for the hydrophobic core of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
L F Povirk  I H Goldberg 《Biochemistry》1980,19(21):4773-4780
The methanol-extracted, nonprotein chromophore of neocarzinostatin (NCS), which has DNA-degrading activity comparable to that of the native antibiotic, was found to have a strong affinity for DNA. Binding of chromophore was shown by (1) quenching by DNA of the 440-nm fluorescence and shifting of the emission peak to 420 nm, (2) protection by DNA against spontaneous loss of activity in aqueous solution, and (3) inhibition by DNA of the spontaneous generation of 490-nm fluorescence. Good quantitative correlation was found between these three methods in measuring chromophore binding. There was nearly a 1:1 correspondence between loss of chromophore activity and generation of 490-nm fluorescence, suggesting spontaneous degradation of active chromophore to a highly fluorescent product. Chromophore showed a preference for DNA high in adenine + thymine content in both fluorescence quenching and protection studies. NCS apoprotein, which is known to bind and protect active chromophore, quenched the 440-nm fluorescence, shifted the emission peak to 420 nm, and inhibited the generation of 490-nm fluorescence. Chromophore had a higher affinity for apoprotein than for DNA. Pretreatment of chromophore with 2-mercaptoethanol increased the 440-nm fluorescence seven-fold and eliminated the tendency to generate 490-nm fluorescence. The 440-nm fluorescence of this inactive material was also quenched by DNA and shifted to 420 nm, indicating an affinity for DNA comparable to that of untreated chromophore. However, its affinity for apoprotein was much lower than that of untreated chromophore. Both 2-mercapto-ethanol-treated and untreated chromophore unwound supercoiled pMB9 DNA, suggesting intercalation by both molecules. Since no physical evidence for interaction of native neocarzinostatin with DNA has been found, it is likely that dissociation of the chromophore from the protein and association with DNA are important steps in degradation of DNA by neocarzinostatin.  相似文献   

20.
The native cysteine residues of green fluorescent protein (GFP) at positions 48 and 70 were replaced by non-thiolic amino acids, and new cysteine sites were introduced at specific, surface positions. Based on molecular modeling of the GFP structure, the sites chosen for mutagenesis to Cys were glutamic acid at position 6 and isoleucine at position 229. These new, unique cysteine sites provided reactive thiol groups suitable for site-specific chemical modification by eosin-based fluorescence labels. The new constructs were designed to serve as the basis of proof of principle for fluorescence resonance energy transfer (FRET) using an enzyme-activated (trypsin) intervening sequence between native and chemically conjugated fluorophores. These eosin moieties provided chemical FRET partners for the native GFP chromophore. On excitation, these GFP-eosin constructs exhibited strong intramolecular FRET, with quenching of the native GFP (511 nm) fluorophore emission and emission around 540 nm, corresponding to eosin. GFP mutants engineered with trypsin-sensitive sequences close to the eosin site, so that on trypsinolysis FRET was destroyed, the emission wavelength switching from that of the chemical FRET partner back to that of the native GFP fluorophore, providing efficient, ratio-based detection. This protein engineering provides the basis for novel bioprobes for enzymatic triggering using intramolecular FRET between GFP and carefully sited chemical labels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号