首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sulfonylurea on the activity of acetyl-coenzyme A carboxylase, a rate limiting enzyme of lipogenesis, was investigated using isolated rat adipocytes. Insulin significantly increased the enzyme activity by 170% of the control level, while glucagon and epinephrine decreased the activity of the enzyme by 53% and 64% of the control, respectively. In the presence of tolbutamide (10(-3) M) or glibenclamide (10(-6) M), a significant potentiation of insulin action was found in adipocytes. In addition, sulfonylurea restored the activity of acetyl-CoA carboxylase reduced by glucagon or epinephrine to the control level. Sulfonylurea enhancement of the acetyl-CoA carboxylase activity may offer one possible explanation for a mechanism of antilipolytic action of the drug in adipocytes.  相似文献   

2.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

3.
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.  相似文献   

4.
Changes in the activities of acetyl-CoA carboxylase and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase were studied in primary cultures of adult-rat hepatocytes after exposure of the cells to insulin and/or carbohydrates. To determine the contribution of protein synthesis to changes in enzyme activity, the relative rate of synthesis of each enzyme was measured and the amount of translatable mRNA coding for the enzymes was determined by translation in vitro and immunoprecipitation. Addition of insulin to the culture medium increased the activities of acetyl-CoA carboxylase and HMG-CoA reductase by approx. 4- and 3-fold respectively. Although similar increases in the relative rate of synthesis of each protein and template activity were noted, initial increases in the activity of each enzyme occurred before any changes in protein synthesis were observed, suggesting the involvement of post-translational modification of enzyme activity in addition to changes in protein synthesis. The addition of fructose to the culture medium, in the absence of insulin, increased the activity of the carboxylase and the reductase approx. 3-fold, similar to the effects of insulin. However, the effect of fructose was to increase the rate of synthesis and the amount of translatable mRNA coding for acetyl-CoA carboxylase, whereas the increase in the activity of HMG-CoA reductase was not accompanied by any changes in the rate of synthesis or template activity. The effects of fructose could not be mimicked by glucose unless insulin was also present in the culture medium. Similar to observations in vitro, the injection of insulin or the feeding of a high-fructose diet to rats made diabetic by the injection of streptozotocin produced an increase in the activities of acetyl-CoA carboxylase and HMG-CoA reductase, and only the increase in the activity of the carboxylase was accompanied by an increase in the amount of translatable mRNA coding for the enzyme. The results are discussed in terms of the effects of fructose on the synthesis of enzymes involved in lipogenesis.  相似文献   

5.
1. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) stimulates fatty acid synthesis from glucose in isolated adipocytes with a half-maximal effect at 0.72 microM. In seven batches of cells, the maximal effects of TPA and insulin were 8.5 +/- 1.1-fold and 27.1 +/- 2.1-fold respectively. Insulin also stimulated fatty acid synthesis from acetate 8.9 +/- 0.5-fold (three experiments), but TPA did not significantly increase fatty acid synthesis from this precursor. 2. In contrast to insulin, TPA treatment of isolated adipocytes did not produce an activation of acetyl-CoA carboxylase which was detectable in crude cell extracts. 3. The total phosphate content of acetyl-CoA carboxylase, isolated from adipocytes in the presence of protein phosphatase inhibitors, was estimated by 32P-labelling experiments to be 2.6 +/- 0.1 (5), 3.4 +/- 0.2 (5), and 3.8 +/- 0.2 (3) mol/mol subunit for enzyme from control, insulin- and TPA-treated cells respectively. Insulin and TPA stimulated phosphorylation within the same two tryptic peptides. 4. Purified acetyl-CoA carboxylase is phosphorylated in vitro by protein kinase C at serine residues which are recovered in three tryptic peptides, i.e. peptide T1, which appears to be identical with the peptide Ser-Ser(P)-Met-Ser-Gly-Leu-His-Leu-Val-Lys phosphorylated by cyclic-AMP-dependent protein kinase, and peptides Ta and Tb, which have the sequences Ile-Asp-Ser(P)-Gln-Arg and Lys-Ile-Asp-Ser(P)-Gln-Arg respectively, and which appear to be derived from a single site by alternative cleavages. None of these correspond to the peptides whose 32P-labelling increase in response to insulin or TPA. Peptides Ta/Tb are not significantly phosphorylated in isolated adipocytes, even after insulin or TPA treatment. Peptide T1 is phosphorylated in isolated adipocytes, but this phosphorylation is not altered by insulin or TPA. 5. These results show that TPA mimics the effect of insulin on phosphorylation, but not activation, of acetyl-CoA carboxylase, i.e. that these two events can be dissociated. In addition, phorbol ester stimulates phosphorylation of acetyl-CoA carboxylase in isolated adipocytes, but this is not catalyzed directly by protein kinase C, and acetyl-CoA carboxylase does not appear to be a physiological substrate for this kinase.  相似文献   

6.
The activation of acetyl-CoA carboxylase (measured in a crude supernatant fraction) caused by insulin treatment of adipocytes was completely unaffected by the addition of a large amount of highly purified protein phosphatase to the supernatant fraction. Under the same conditions the inhibition of acetyl-CoA carboxylase by adrenaline was totally reversed. Experiments with 32P-labelled adipocytes showed that insulin increased the total phosphorylation of acetyl-CoA carboxylase from 2.7 to 3.5 molecules of phosphate/240 kDa subunit, and confirmed that this increase was partially accounted for by phosphorylation within a specific peptide (the 'I-site' peptide). Protein phosphatase treatment of the crude supernatant fractions removed over 80% of the 32P radioactivity from the enzyme and removed all detectable radioactivity from the I-site peptide. The effect of insulin on acetyl-CoA carboxylase activity, but not the effect on phosphorylation, was lost on purification of the enzyme on avidin-Sepharose. The effect on enzyme activity was also lost if crude supernatant fractions were subjected to rapid gel filtration after treatment under conditions of high ionic strength, similar to those used in the avidin-Sepharose procedure. These results show that, although insulin does increase the phosphorylation of acetyl-CoA carboxylase at a specific site, this does not cause enzyme activation. They suggest instead that activation of the enzyme by insulin is mediated by a tightly bound low-Mr effector which dissociates from the enzyme at high ionic strength.  相似文献   

7.
The mechanism responsible for the insulin resistance described in vivo in brown adipose tissue (BAT) of lactating rats was investigated. The effect of insulin on glucose metabolism was studied on isolated brown adipocytes of non-lactating and lactating rats. Insulin stimulation of total glucose metabolism is 50% less in brown adipocytes from lactating than from non-lactating rats. This reflects a decreased effect of insulin on glucose oxidation and lipogenesis. However, the effect of noradrenaline (8 microM) on glucose metabolism was preserved in brown adipocytes from lactating rats as compared with non-lactating rats. The number of insulin receptors is similar in BAT of lactating and non-lactating rats. The insulin-receptor tyrosine kinase activity is not altered during lactation, for receptor autophosphorylation as well as tyrosine kinase activity towards the synthetic peptide poly(Glu4-Tyr1). The defect in the action of insulin is thus localized at a post-receptor level. The insulin stimulation of pyruvate dehydrogenase activity during euglycaemic/hyperinsulinaemic clamps is 2-fold lower in BAT from lactating than from non-lactating rats. However, the percentage of active form of pyruvate dehydrogenase is similar in non-lactating and lactating rats (8.6% versus 8.9% in the basal state, and 37.0% versus 32.3% during the clamp). A decrease in the amount of pyruvate dehydrogenase is likely to be involved in the insulin resistance described in BAT during lactation.  相似文献   

8.
Activation of acetyl-CoA carboxylase during incubation of crude extracts of lactating rat mammary gland with Mg2+ and citrate can be blocked by NaF, suggesting that it represents a dephosphorylation of the enzyme. The greater extent of activation in extracts from 24 h-starved rats (200%) compared with fed controls (70%) implies that the decrease in acetyl-CoA carboxylase activity in response to 24 h starvation may involve increased phosphorylation of the enzyme. Acetyl-CoA carboxylase was purified from the mammary glands of lactating rats in the presence of protein phosphatase inhibitors by avidin-Sepharose chromatography. Starvation of the rats for 24 h increased the concentration of citrate giving half-maximal activation by 75%, and decreased the Vmax. of the purified enzyme by 73%. This was associated with an increase in the alkali-labile phosphate content from 3.3 +/- 0.2 to 4.5 +/- 0.4 mol/mol of enzyme subunit. Starvation of lactating rats for 6 h, or short-term insulin deficiency induced by streptozotocin injection, did not effect the kinetic parameters or the phosphate content of acetyl-CoA carboxylase purified from mammary glands. The effects of 24 h starvation on the kinetic parameters and phosphate content of the purified enzyme were completely reversed by re-feeding for only 2.5 h. This effect was blocked if the animals were injected with streptozotocin before re-feeding, suggesting that the increase in plasma insulin that occurs on re-feeding was responsible for the activation of the enzyme. The effects of re-feeding 24 h-starved rats on the kinetic parameters and phosphate content of acetyl-CoA carboxylase could be mimicked by treating enzyme purified from 24 h-starved rats with protein phosphatase-2A in vitro. Our results suggest that, in mammary glands of 24 h-starved lactating rats, insulin brings about a dephosphorylation of acetyl-CoA carboxylase in vivo, which may be at least partly responsible for the reactivation of mammary lipogenesis in response to re-feeding.  相似文献   

9.
Measurement of acetyl-CoA carboxylase activity in isolated hepatocytes   总被引:7,自引:0,他引:7  
An assay is described for acetyl-CoA carboxylase activity in isolated hepatocytes. The assay is based on two principles: The hepatocytes are made permeable by digitonin. 64 micrograms of digitonin per mg of cellular protein were most effective in exposing enzyme activity without a significant effect on mitochondrial permeability. Enzyme activity is measured by coupling the carboxylase reaction to the fatty acid synthase reaction. The advantages offered by this procedure over existing assays are: rapidity, no need to prepare cell extracts, absence of product inhibition, no interference by mitochondrial enzymes, useful in systems with bicarbonate buffers, and simple separation of radioactive substrate from labelled products. Using this coupled enzyme assay a good correlation was observed between changes in the activity of acetyl-CoA carboxylase and changes in the rate of fatty acid synthesis in hepatocytes as effected by short-term modulators.  相似文献   

10.
B Quistorff  N Katz  L A Witters 《Enzyme》1992,46(1-3):59-71
Lipid metabolism appears to be less zonated than carbohydrate and protein metabolism. Studies on the zonation of lipid metabolism have been centered in particular on fatty acid synthesis which, according to the concept of metabolic zonation, should be a predominantly perivenous process while fatty acid oxidation should be periportal. There are, however, conflicting data on the activity gradients of lipogenic enzymes as well as measurements of actual synthesis of fatty acid and very low density lipoprotein. Data obtained by microdissection show a 1.5- to 2-fold higher activity of acetyl-CoA carboxylase and citrate lyase in the perivenous zone in agreement with measurements of the actual rate of fatty acid synthesis in preparations of hepatocyte, enriched in periportal or perivenous cells. On the other hand, results obtained with the dual-digitonin-pulse perfusion technique demonstrate the opposite gradient in the form of a 2- to 3-fold higher specific activity of acetyl-CoA carboxylase in the periportal zone based on measurements of the acetyl-CoA carboxylase protein proper. This specific activity gradient, which applies to male and not female rats, disappears almost completely in the fasted-refed animal, were lipogenesis is strongly induced. In this review we attempt to rationalize these discrepancies in the results as methodological differences which in particular apply to the following parameters: (1) expression of results (reference substance); (2) selectivity of zonal sampling, and (3) differences in methodology of acetyl-CoA carboxylase measurements. It is concluded that these factors could account for the discrepancies, but further studies, in particular on the zonation acetyl-CoA carboxylase mRNA, are required in order to further understand the zonation of lipid metabolism and its possible role in the metabolic regulation of the liver.  相似文献   

11.
1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the ;initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the ;control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3-0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70-80% of ;control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12muunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed.  相似文献   

12.
1. Most of the cyclic-nucleotide-independent acetyl-CoA carboxylase kinase activity in an extract of rat epididymal adipose tissue was evaluated from a Mono Q column by 0.175 M-NaCl at pH 7.4. The activity of the kinase in this fraction (fraction 1) was increased after exposure of intact tissue to insulin. 2. Incubation of purified adipose-tissue acetyl-CoA carboxylase with [gamma-32P]ATP and samples of fraction 1 led to the incorporation of up to 0.4 mol of 32P/mol of enzyme subunit. Most of the phosphorylation was on serine residues within a single tryptic peptide. This peptide, on the basis of two-dimensional t.l.c. analysis, h.p.l.c. and Superose 12 chromatography, appeared to be the same as the acetyl-CoA carboxylase peptide ('I'-peptide) which exhibits increased phosphorylation in insulin-treated tissue. 3. Phosphorylation of purified acetyl-CoA carboxylase by the kinase in fraction 1 was found to be associated with a parallel 4-fold increase in activity. However, increases in both phosphorylation and activity were much diminished if fraction 1 was treated by Centricon centrifugation to remove low-Mr components. Among these components was a potent inhibitor of acetyl-CoA carboxylase activity which appeared to be necessary for the kinase in fraction 1 to be fully active. 4. The inhibitor remains to be identified, but inhibition requires MgATP, although the inhibitor itself does not cause any phosphorylation of the carboxylase. No effects of insulin were observed on the activity of the inhibitor. 5. It is concluded that the kinase probably plays an important role in the mechanism whereby insulin brings about the well-established increases in phosphorylation and activation of acetyl-CoA carboxylase in adipose tissue.  相似文献   

13.
The kinetic parameters and phosphorylation state of acetyl-CoA carboxylase were analysed after purification of the enzyme by avidin--Sepharose chromatography from extracts of isolated adipocytes treated with glucagon or adrenaline. The results provide evidence that the mechanism of inhibition of acetyl-CoA carboxylase in adipocytes treated with glucagon [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788] involves increased phosphorylation of the enzyme. Hormone treatment had effects on the kinetic parameters of the enzyme similar to those of phosphorylation of the enzyme in vitro by cyclic AMP-dependent protein kinase. Glucagon treatment of adipocytes led to increased phosphorylation of acetyl-CoA carboxylase in the same chymotryptic peptide as that containing the major site phosphorylated on the enzyme by purified cyclic AMP-dependent protein kinase in vitro [Munday & Hardie (1984) Eur. J. Biochem. 141, 617-627]. The dose--response curves for inhibition of enzyme activity and increased phosphorylation of the enzyme were very similar, with half-maximal effects occurring at concentrations of glucagon (0.5-1 nM) which are close to the physiological range. In general, the patterns of increased 32P-labelling of chymotryptic peptides induced by glucagon or adrenaline were similar, although there were quantitative differences between the effects of the two hormones on individual peptides. The results are discussed in terms of the possible roles of cyclic AMP-dependent and -independent protein kinases in the regulation of acetyl-CoA carboxylase activity and of lipogenesis in white adipose tissue.  相似文献   

14.
1. A new rapid method for the purification of fat-cell acetyl-CoA carboxylase is described; the key step is sedimentation after specific polymerization by citrate. 2. Incubation of epididymal fat-pads or isolated fat-cells with insulin or adrenaline leads to a rapid increase or decrease respectively in the activity of acetyl-CoA carboxylase measured in fresh tissue extracts. The persistence of the effect of insulin through high dilution of tissue extracts and through purification involving precipitation with (NH4)2SO4 suggests that the enzyme undergoes a covalent modification after exposure of intact tissue to the hormone. The opposed effects of insulin and adrenaline are not adequately explained through modification of a common site on acetyl-CoA carboxylase, since these hormones bring about qualitatively different alterations in the kinetic properties of the enzyme measured in tissue extracts. 3. The state of phosphorylation of acetyl-CoA carboxylase within intact fat-cells exposed to insulin was determined, and results indicate a small but consistent rise in overall phosphorylation of the Mr-230000 subunit after insulin treatment. 4. Acetyl-CoA carboxylase from fat-cells previously incubated in medium containing [32P]phosphate was purified by immunoprecipitation and then digested with performic acid and trypsin before separation of the released phosphopeptides by two-dimensional analysis. Results obtained show that the exposure of fat-cells to insulin leads to a 5-fold increase in incorporation of 32P into a peptide which is different from those most markedly affected after exposure of fat-cells to adrenaline. 5. These studies indicate that the activation of acetyl-CoA carboxylase in cells incubated with insulin is brought about by the increased phosphorylation of a specific site on the enzyme, possibly catalysed by the membrane-associated cyclic AMP-independent protein kinase described by Brownsey, Belsham & Denton [(1981) FEBS Lett. 124, 145-150].  相似文献   

15.
Acetyl-CoA carboxylase, the rate-limiting enzyme in the biogenesis of long-chain fatty acids, is regulated by phosphorylation and dephosphorylation. The major phosphorylation sites that affect carboxylase activity and the specific protein kinases responsible for phosphorylation of different sites have been identified. A form of acetyl-CoA carboxylase that is independent of citrate for activity occurs in vivo. This active form of carboxylase becomes citrate-dependent upon phosphorylation under conditions of reduced lipogenesis. Therefore, phosphorylation-dephosphorylation of acetyl-CoA carboxylase is the enzyme's primary short-term regulatory mechanism; this control mechanism together with cellular metabolites such as CoA, citrate, and palmitoyl-CoA serves to fine-tune the synthesis of long-chain fatty acids under different physiological conditions.  相似文献   

16.
The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.  相似文献   

17.
18.
Biotinyl proteins were labelled by incubation of SDS-denatured preparations of subcellular fractions of rat liver with [14C]methylavidin before polyacrylamide-gel electrophoresis. Fluorographic analysis showed that mitochondria contained two forms of acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming) EC 6.4.1.2], both of which were precipitated by antibody to the enzyme. When both forms were considered, almost three-quarters of the total liver acetyl-CoA carboxylase was found in the mitochondrial fraction of liver from fed rats while only 3.5% was associated with the microsomal fraction. The remainder was present in cytosol, either as the intact active enzyme or as a degradation product. The actual specific activity of the cytosolic enzyme was approx. 2 units/mg of acetyl-CoA carboxylase protein while that of the mitochondrial enzyme was about 20-fold lower, indicating that mitochondrial acetyl-CoA carboxylase was relatively inactive. Fractionation of mitochondria with digitonin showed that acetyl-CoA carboxylase was associated with the outer mitochondrial membrane. The available evidence suggests that mitochondrial acetyl-CoA carboxylase represents a reservoir of enzyme which can be released and activated under lipogenic conditions.  相似文献   

19.
20.
The changes of insulin responsiveness of white adipose tissue during the suckling-weaning transition in the rat were investigated in vitro on isolated adipocytes. Insulin binding, glucose transport and glucose metabolism in adipocytes from suckling rats and from rats weaned on to a high-carbohydrate (HC) or a high-fat (HF) diet were compared. Despite similar insulin binding, insulin-stimulated glucose transport rate is lower in adipocytes from suckling rats and HF-weaned rats than in adipocytes from HC-weaned rats. Moreover, whereas insulin markedly stimulates glucose metabolism in adipocytes from HC-weaned rats, glucose metabolism is totally unresponsive to insulin in adipocytes from suckling and HF-weaned rats. This insulin resistance is associated with a very low rate of lipogenesis and low activities of acetyl-CoA carboxylase, fatty acid synthase and pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号