首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

2.
The effects of intercropping of wheat cultivars and oilseed rape on the densities of wheat aphid, Sitobion avenae, and their arthropod natural enemies were evaluated. Three winter wheat cultivars with different resistant levels to S. avenae were used: ‘KOK’ (high resistance), ‘Xiaobaidongmai’ (low resistance) and ‘Hongmanghong’ (susceptible). The results showed that the densities of S. avenae were significantly higher on the monoculture pattern than on either the 8-2 intercropping pattern (eight rows of wheat with two rows of oilseed rape) or the 8-4 intercropping pattern (eight rows of wheat with four rows of oilseed rape). The mean number of predators and the mummy rates of S. avenae were significantly higher in two intercropping patterns than those in the monoculture pattern. The densities of S. avenae, ladybeetles, and mummy rate of S. avenae were significantly different among different wheat cultivars. The highest densities of S. avenae and ladybeetles were found on wheat cultivar Hongmanghong. The lowest densities of S. avenae associated with high mummy rate of S. avenae were found on wheat cultivar Xiaobaidongmai. The results showed that wheat-oilseed rape intercropping conserved more predators and parasitoids than in wheat monoculture fields, and partial resistance of wheat cultivar Xiaobaidongmai had complementary or even synergistic effects on parasitoid of S. avenae.  相似文献   

3.
Wang W L  Liu Y  Chen J L  Ji X L  Zhou H B  Wang G 《农业工程》2009,29(3):186-191
The effects of intercropping of wheat cultivars and oilseed rape on the densities of wheat aphid, Sitobion avenae, and their arthropod natural enemies were evaluated. Three winter wheat cultivars with different resistant levels to S. avenae were used: ‘KOK’ (high resistance), ‘Xiaobaidongmai’ (low resistance) and ‘Hongmanghong’ (susceptible). The results showed that the densities of S. avenae were significantly higher on the monoculture pattern than on either the 8-2 intercropping pattern (eight rows of wheat with two rows of oilseed rape) or the 8-4 intercropping pattern (eight rows of wheat with four rows of oilseed rape). The mean number of predators and the mummy rates of S. avenae were significantly higher in two intercropping patterns than those in the monoculture pattern. The densities of S. avenae, ladybeetles, and mummy rate of S. avenae were significantly different among different wheat cultivars. The highest densities of S. avenae and ladybeetles were found on wheat cultivar Hongmanghong. The lowest densities of S. avenae associated with high mummy rate of S. avenae were found on wheat cultivar Xiaobaidongmai. The results showed that wheat-oilseed rape intercropping conserved more predators and parasitoids than in wheat monoculture fields, and partial resistance of wheat cultivar Xiaobaidongmai had complementary or even synergistic effects on parasitoid of S. avenae.  相似文献   

4.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

5.
Cereal aphids infesting spring wheat in southwestern Idaho were surveyed during 1988 and 1989 for the presence of entomophthoralean fungi and hymenopterous parasitoids. Cereal aphids killed by the fungi (cadavers) and parasitoids (mummies) includedDiuraphis noxia (Mordvilko),Metopolophium dirhodum (Walker),Sitobion avenae (F.), andSchizaphis graminum (Rondani). Taylor's power law was used to describe the relationships between mean densities of cadavers or mummies (number per tiller) and associated variances. Except forS. graminum mummies, which were at low levels throughout the growing seasons and tended to be randomly distributed, Taylor's slopes exceeded 1.0 for all the aphid cadavers and mummies, indicating varying degrees of clumping in spatial pattern. The spatial patterns ofD. noxia andM. dirhodum cadavers were similar, simply reflecting those of their own populations, but more aggregated than were their respective mummies resulting from parasitoid attack. The intercepts and slopes from the power law analysis were used to generate functional relationships between the proportion of wheat tillers bearing cadavers or mummies of each aphid species and the mean density, and develop optimal numerical (direct counting) and binomial (presence or absence) sample size curves for both cadavers and mummies of each aphid species.   相似文献   

6.
Larvicidal activity of lectins onLucilia cuprina: mechanism of action   总被引:1,自引:0,他引:1  
Foraging behaviour and host-instar preference of young and old females of the solitary aphid parasitoid,Lysiphlebus cardui Marshall (Hymenoptera: Aphidiidae), were studied in the laboratory. The analysis of interactions between parasitoids and different stages ofAphis fabae cirsiiacanthoidis Scop. (Homoptera: Aphididae) revealed that encounter rates between aphids and parasitoid females and defence reactions of the aphids influenced the degree to which a particular aphid age class is parasitized. Encounter rates between hosts and parasitoid females depended on the foraging pattern of the parasitoid, which varied with age. In mixed aphid colonies patch residence time increased with parasitoid age. Furthermore, younger parasitoids (≦1 day old) laid more eggs into second and third instars, while older parasitoids (≧4 days old) did not show distinct host instar preferences. It is suggested that the oviposition behaviour ofL. cardui is influenced by the physiological state, i.e. the age of the wasp.  相似文献   

7.
The effects of three wheat cultivars and two oat cultivars on the development of the cereal aphid parasitoid Aphidius rhopalosiphi De Steph. and the generalist aphid parasitoid Ephedrus plagiator (Nees) (Hymenoptera: Braconidae) were evaluated in the laboratory. The level of hydroxamic acids, a family of secondary metabolites that can affect the mean relative growth rate of cereal aphids in cereals, were measured in the different cultivars. The parasitoids were reared in Sitobion avenae (F.) (Homoptera: Aphididae), using plants grown under greenhouse conditions. A. rhopalosiphi showed a longer developmental time on wheat relative to oat cultivars. This effect was accounted for by a significant increase in the time from oviposition to pupation (mummy formation), while the duration of the pupal stage remained constant between treatments. No further effects were observed in other variables evaluating A. rhopalosiphi performance, such as adult longevity, adult body weight and secondary sex ratio. The generalist E. plagiator did not show significant differences in any of the variables analysed, both between cultivars and cereal species. Hydroxamic acids levels correlated negatively with mean relative growth rates of S. avenae, but positively with the observed developmental time of A. rhopalosiphi. The results are discussed in terms of tritrophic effects and the development of breeding programmes trying to improve plant resistance to aphids.  相似文献   

8.
1. Concerns about climate change often trigger the question whether physiological and behavioural responses of species will enable them to persist. However, species do not exist alone and are largely dependent on interactions with others within communities. 2. In the present study, a mechanistic approach is used to test the hypothesis that inter‐specific differences in metabolic response to unpredictable short‐term thermal changes can change the outcome of host–parasitoid behavioural interactions. 3. The effect of a drop or a rise of 5 °C on resting metabolic rates (RMR) of the main aphid pest of cereal crops in Western Europe, the host Sitobion avenae Fabricius and its main natural enemy, the parasitoid Aphidius rhopalosiphi De Stefani‐Perez was measured. Also, defence and attack behaviours were measured for host and parasitoid separately as well as in interaction, since behavioural strategies of both species largely determine parasitism success. 4. The results showed that, when no change in temperature occurred, parasitoids had the highest oviposition rate. However, only with a rise of temperature behavioural interactions were disrupted: the parasitoid attack rate decreased whereas the aphid defence rate increased. This alteration in behaviour was associated with a stronger thermal response of RMR in hosts than in parasitoids, suggesting that species‐specific thermal responses of RMR could give valuable information on changes in the outcome of species interactions under warm spells but not under cold ones. 5. It was shown that relatively modest thermal changes with non‐lethal effects can have profound consequences for interacting co‐evolved species which may affect ecosystem services, such as biological control of pest populations.  相似文献   

9.
This study investigated the effects of airborne interaction between different barley cultivars on the behaviour of bird cherry-oat aphid Rhopalosiphum padi, the ladybird Coccinella septempunctata and the parasitoid Aphidius colemani. In certain cultivar combinations, exposure of one cultivar to air passed over a different cultivar caused barley to have reduced aphid acceptance and increased attraction of ladybirds and parasitoids. Parasitoids attacked aphids that had developed on plants under exposure more often than those from unexposed plants, leading to a higher parasitisation rate. Ladybirds, but not parasitoids, were more attracted to combined odours from certain barley cultivars than either cultivar alone. The results show that airborne interactions between undamaged plants can affect higher trophic levels, and that odour differences between different genotypes of the same plant species may be sufficient to affect natural enemy behaviour.  相似文献   

10.
The role of natural enemy guilds in Aphis glycines suppression   总被引:1,自引:0,他引:1  
Generalist natural enemy guilds are increasingly recognized as important sources of mortality for invasive agricultural pests. However, the net contribution of different species to pest suppression is conditioned by their biology and interspecific interactions. The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is widely attacked by generalist predators, but the relative impacts of different natural enemy guilds remains poorly understood. Moreover, low levels of A. glycines parasitism suggest that resident parasitoids may be limited through intraguild predation. During 2004 and 2005, we conducted field experiments to test the impact of different guilds of natural enemies on A. glycines. We contrasted aphid abundance on field cages with ambient levels of small predators (primarily Orius insidiosus) and parasitoids (primarily Braconidae), sham cages and open controls exposed to large predators (primarily coccinellids), and cages excluding all natural enemies. We observed strong aphid suppression (86- to 36-fold reduction) in treatments exposed to coccinellids, but only minor reduction due to small predators and parasitoids, with aphids reaching rapidly economic injury levels when coccinellids were excluded. Three species of resident parasitoids were found attacking A. glycines at very low levels (<1% parasitism), with no evidence that intraguild predation by coccinellids attenuated parasitoid impacts. At the plant level, coccinellid impacts resulted in a trophic cascade that restored soybean biomass and yield, whereas small natural enemies provided only minor protection against yield loss. Our results indicate that within the assemblage of A. glycines natural enemies in Michigan, coccinellids are critical to maintain aphids below economic injury levels.  相似文献   

11.
Zoophthora radicans (Zygomycetes: Entomophthorales), Diadegma semiclausum (Hymenoptera: Ichneumonidae), and Cotesia plutellae (Hymenoptera: Braconidae) are all natural enemies of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Adult C. plutellae are not susceptible to Z. radicans infection but the pathogen can infect and kill adult D. semiclausum. Infection of adult D. semiclausum prior to exposure to P. xylostella host larvae significantly reduced the number of parasitoid cocoons subsequently developing from the host larvae. Although Z. radicans infection of P. xylostella larvae prior to parasitism by D. semiclausum or C. plutellae always resulted in the death of the immature parasitoids, neither species discriminated between healthy and Z. radicans-infected host larvae in an oviposition choice experiment. However, host larvae recently killed by Z. radicans were always rejected by D. semiclausum but sometimes accepted by C. plutellae. At 20 degrees C, egg to pupa development took 6.7 and 7.8 days for D. semiclausum and C. plutellae, respectively. C. plutellae parasitism significantly increased host instar duration but D. semiclausum parasitism did not. Cadavers of P. xylostella larvae parasitized 1 day prior to fungal infection showed no reduction in Z. radicans conidia yield. However, cadavers of larvae parasitized 3 days prior to fungal infection demonstrated a marked decrease in Z. radicans conidia yield. Z. radicans infection of P. xylostella larvae < or = 4 days after parasitism resulted in 100% parasitoid mortality; thereafter, the reduction in parasitoid cocoon yield decreased as the time between parasitism and initiation of fungal infection increased. The extended duration of the host larval stage induced by C. plutellae parasitism increased the availability of the parasitoid to the pathogen. Estimates of interspecific competition indicated a similar pattern for the interaction between Z. radicans and each species of parasitoid.  相似文献   

12.
The epichloae are ascomycetous fungi in the genera Epichloë and Neotyphodium that live within grasses. Some of these fungi produce alkaloids that can help protect the host from herbivores. The alkaloids may also travel up the food web and affect members of the third trophic level. In this way they can produce trophic cascades which are rippling effects when a trophic level impacts those above or below it. We briefly summarize the general patterns of multitrophic effects of endophytes and highlight the most recent studies on this topic. Further, we report on our study in which we tested if different fungal strains in tall fescue (cultivar Jesup) affect multitrophic interactions involving aphids and their parasitoid natural enemies. Using both the common strain of N. coenophialum and a novel isolate (AR577), we allowed potted plants to be colonized by aphids and parasitoids in a semi-natural setting. We found that endophyte infection of tall fescue resulted in greater vegetative growth of the plant. We also found that N. coenophialum modified bottom-up cascades by depressing both aphid and parasitoid densities. Finally, we found that multitrophic effects were modified by fungal isolate: the common strain had stronger negative impacts on aphid and parasitoid densities than did the novel isolate.  相似文献   

13.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

14.
The potential of parasitoids for aphid control during summer has been well documented. Few results are available on the impact of parasitoid populations on aphid hosts during autumn and winter and on the dynamics of their interactions during this period. The population development of Sitobion avenae, in Belgium, is analysed, from October to April, in the presence and absence of the parasitoid Aphidius rhopalosiphi. In the presence of parasitoids in winter, aphid populations decreased markedly and remained low at the beginning of spring. Induction of winter diapause in A. rhopalosiphi was observed during November at a mean temperature of 6.3°C and a decreasing photoperiod from 9.5–8.5 h of day light. A large range of A. rhopalosiphi mummy colourations, between dark and light, was noticed. This range of colouration did not allow a clear-cut distinction between diapausing and non-diapausing individuals of A. rhopalosiphi. The influence of seasonal weather and particularly temperature conditions on parasitoid mortality, strategy for overwintering and aphid population dynamics are discussed.  相似文献   

15.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

16.
Agricultural intensification has been shown to result in a decline in biodiversity across many taxa, but the changes in community structure and species interactions remain little understood. We have analysed and compared the structure of feeding interactions for cereal aphids and their primary and secondary parasitoids in organically and conventionally managed winter wheat fields using quantitative food web metrics (interaction evenness, generality, vulnerability, link density). Despite little variation in the richness of each trophic group, food web structures between the two farming systems differed remarkably. In contrast to common expectations, aphids and primary parasitoids were characterized by (1) a higher evenness of interaction frequencies (interaction evenness) in conventional fields, which cascaded to interactions at the next trophic level, with (2) a higher interaction evenness, (3) a higher ratio of primary parasitoid taxa per secondary parasitoid (generality) and (4) a higher link density. Aphid communities in the organically managed fields almost exclusively consisted of a single ear-colonizing species, Sitobion avenae, while highly fertilized conventional fields were mainly infested by leaf-colonizing aphids that benefit from the nutritional status of winter wheat. In conclusion, agricultural intensification appears to foster the complexity of aphid–parasitoid food webs, thereby not supporting the general expectation on the importance of organic farming practices for species richness and food web complexity.  相似文献   

17.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

18.
The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non‐additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.  相似文献   

19.
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.  相似文献   

20.
Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号