首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the ability of the transposable element Tc1 to excise from the genome of the nematode Caenorhabditis elegans var. Bristol N2. Our results show that in the standard lab strain (Bristol), Tc1 excision occurred at a high frequency, comparable to that seen in the closely related Bergerac strain BO. We examined excision in the following way. We used a unique sequence flanking probe (pCeh29) to investigate the excision of Tc1s situated in the same location in both strains. Evidence of high-frequency excision from the genomes of both strains was observed. The Tc1s used in the first approach, although present in the same location in both genomes, were not known to be identical. Thus, a second approach was taken, which involved the genetic manipulation of a BO variant, Tc1(Hin). The ability of this BO Tc1(Hin) to excise was retained after its introduction into the N2 genome. Thus, we conclude that excision of Tc1 from the Bristol genome occurs at a high frequency and is comparable to that of Tc1 excision from the Bergerac genome. We showed that many Tc1 elements in N2 were apparently functionally intact and were capable of somatic excision. Even so, N2 Tc1s were prevented from exhibiting the high level of heritable transposition displayed by BO elements. We suggest that Bristol Tc1 elements have the ability to transpose but that transposition is heavily repressed in the gonadal tissue.  相似文献   

2.
Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated upon integration. Since Tc7 does not encode its own transposase but contains the Tc1-transposase binding site at its extremities, we tested the ability of Tc7 to jump upon forced expression of Tc1 transposase in somatic cells. Under these conditions Tc7 jumps at a frequency similar to Tc1. The target site choice of Tc7 is identical to that of Tc1. These data suggest that Tc7 shares with Tc1 all the sequences minimally required to parasitize upon the Tc1 transposition machinery. The genomic distribution of Tc7 shows a striking clustering on the X chromosome where two thirds of the elements (20 out of 33) are located. Related transposons in C. elegans do not show this asymmetric distribution.  相似文献   

3.
In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 elements is invariant in the C. elegans strain N2, which has no germline transposition. However, at the same 32 Tc1 loci in strains with germline transposition, Tc1 elements can acquire the sequence of Tc1 elements elsewhere in the N2 genome or a chimeric sequence derived from two dispersed Tc1 elements. We hypothesize that during double-strand-break repair after Tc1 excision, the template for repair can switch from the Tc1 element on the sister chromatid or homologous chromosome to a Tc1 copy elsewhere in the genome. Thus, the population of active transposable elements in C. elegans is highly dynamic because of a continuous exchange of sequence information between individual copies, potentially allowing a higher evolution rate than that found in endogenous genes.  相似文献   

4.
The presence of a long interspersed nucleotide element, named L1Tc, which is actively transcribed in the parasite Trypanosoma cruzi, has been recently described. The open reading frame 1 of this element encodes the NL1Tc protein, which has apurinic/apyrimidinic endonuclease activity and is probably implicated in the first stage of the transposition of the element. In the present paper we show that NL1Tc effectively removes 3'-blocking groups (3'-phosphate and 3'-phosphoglycolate) from damaged DNA substrates. Thus, both 3'-phosphatase and 3'-phosphodiesterase activities are present in NL1Tc. We propose that these enzymatic activities would allow the 3'-blocking ends to function as targets for the insertion of L1Tc element, in addition to the apurinic/apyrimidinic sites previously described. The potential biological function of the NL1Tc protein has also been evidenced by its ability to repair the DNA damage induced by the methyl methanesulfonate alkylating or oxidative agents such as hydrogen peroxide and t-butyl hydroperoxide in Escherichia coli (xth and xth, nfo) mutants.  相似文献   

5.
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10–12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.  相似文献   

6.
L J Harris  A M Rose 《Plasmid》1989,22(1):10-21
The transposable element Tc1 in the genome of Caenorhabditis elegans var. Bristol strain N2 is very stable. In order to investigate possible causes of Tc1 immobility in this strain 17 individual isolates have been cloned and characterized with regard to their structure and genomic environment. Ten of 16 elements examined had identical restriction maps, and at least 1 of these (#7) showed a high level of somatic excision. Two of the elements had altered restriction sites, 2 had different internal deletions of about 700 bp, 1 had an 89-bp terminal deletion, and 1 a 54-bp insertion. When DNA sequences flanking the N2 Tc1 elements were used as probes in genomic hybridizations, it was found that most N2 elements are located in regions of repetitive DNA. Furthermore when hybridizations to DNA from N2 and var. Bergerac strain B0 were performed, a major band of the same size was observed in both strains. Two flanking sequences identified strain polymorphic sites hP2(IV) and hP3(IV). In at least one of these cases, a rearranged Tc1 was present in the B0 strain at the same location. The fact that all or most of the Tc1 elements are in the same location in N2 and B0 adds support to the hypothesis that the high copy number B0 strain arose from amplification of Tc1 copies in a N2-like strain. The N2 Tc1 elements are highly conserved; however, intact elements had fewer nucleotide changes than the rearranged elements. These results may indicate that the intact Tc1 elements in N2 are functionally active and subject to selective pressure.  相似文献   

7.
The C. elegans genome contains a 1.7 kb repeated DNA sequence (Tc1) that is present in different numbers in various strains. In strain Bristol and 10 other strains analyzed, there are 20 ± 5 copies of Tc1, and these are located at a nearly constant set of sites in the DNA. In Bergerac, however, there are 200 ± 50 interspersed copies of Tc1 that have arisen by insertion of Tc1 elements into new genomic sites. The interspersed copies of Tc1 have a conserved, nonpermuted structure. The structure of genomic Tc1 elements was analyzed by the cloning of a single Tc1 element from Bergerac and the comparison of its structure with homologous genomic sequences in Bristol and Bergerac. Tc1 elements at three sites analyzed in Bergerac undergo apparently precise excision from their points of insertion at high frequency.  相似文献   

8.
The Tc5 Family of Transposable Elements in Caenorhabditis Elegans   总被引:2,自引:0,他引:2       下载免费PDF全文
J. J. Collins  P. Anderson 《Genetics》1994,137(3):771-781
We have identified Tc5, a new family of transposable genetic elements in the nematode Caenorhabditis elegans. All wild-type varieties of C. elegans that we examined contain 4-6 copies of Tc5 per haploid genome, but we did not observe transposition or excision of Tc5 in these strains. Tc5 is active, however, in the mut-2 mutant strain TR679. Of 60 spontaneous unc-22 mutations isolated from strain TR679, three were caused by insertion of Tc5. All three Tc5-induced mutations are unstable; revertants result from precise or nearly precise excision of Tc5. Individual Tc5 elements are similar to each other in size and structure. The 3.2-kb element is bounded by inverted terminal repeats of nearly 500 bp. Eight of the ten terminal nucleotides of Tc5 are identical to the corresponding nucleotides of Tc4. Further, both elements recognize the same target site for insertion (CTNAG) and both cause duplication of the central TNA trinucleotide upon insertion. Other than these similarities to Tc4, Tc5 is unrelated to the three other transposon families (Tc1, Tc3 and Tc4) that transpose and excise at high frequency in mut-2 mutant strains. Mechanisms are discussed by which four apparently unrelated transposon families are all affected by the same mut-2 mutation.  相似文献   

9.
Summary In most strains of Caenorhabditis elegans with a low copy number of Tc1 transposable elements, germline transposition is rare or undetectable. We have observed low-level Tel transposition in the genome of the C. elegans var. Bristol strain KR579 (unc-13[e51]) resulting in an increase in Tc1 copy number and subsequent mutator activity. Examination of genomic blots from KR579 and KR579derived strains revealed that more Tc1-hybridizing bands were present than in other Bristol strains. A novel Tc1-hybridizing fragment was cloned from a KR579-derived strain. Unique sequence DNA flanking the Tc1 element identified a 1.6 kb restriction fragment length difference between the KR579 and N2 strains consistent with a Tc1 insertion at a new genomic site. The site of insertion of this Tel was sequenced and is similar to the published Tel insertion site consensus sequence. Several isolates of KR579 were established and maintained on plates for a period of 3 years in order to determine if Tc1 copy number would continue to increase. In one isolate, KR1787, a further increase in Tc1 copy number was observed. Examination of the KR1787 strain has shown that it also exhibits mutator activity as assayed by the spontaneous mutation frequency at the unc-22 (twitcher) locus. The KR579 strain differs from most low copy number strains in that it exhibits low-level transposition which has developed into mutator activity.  相似文献   

10.
11.
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silkworm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C. elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.  相似文献   

12.
Capriglione T  Odierna G  Caputo V  Canapa A  Olmo E 《Gene》2002,295(2):193-198
We report the presence of Tc1 transposon-like sequences in the Antarctic ice-fish Chionodraco hamatus, belonging to the Notothenioidei. The complete DNA sequence of these transposon-like elements is reduced in length compared to other Tc1 transposons, but it appears to share significant structural similarities with them. It contains a degenerate open reading frame, whose inferred 264 amino acid sequence shares sequence similarity with the 'aspartic acid, aspartic acid (35) glutamic acid' family of transposases, particularly those from Caenorhabditis species (sp.) and Drosophila sp. Southern blot analysis and polymerase chain reaction amplification indicate that Tc1 transposon-like sequences are present in other notothenioid species, though their amount can vary in the different lineages.  相似文献   

13.
In this paper we present the sequence of an intact Caenorhabditis briggsae transposable element, Tcb2. Tcb2 is 1606 base pairs in length and contains 80 base pair imperfect terminal repeats and a single open reading frame. We have identified blocks of T-rich repeats in the regions 150-200 and 1421-1476 of this element which are conserved in the Caenorhabditis elegans element Tc1. The sequence conservation of these regions in elements from different Caenorhabditis species suggests that they are of functional importance. A single open reading frame corresponding to the major open reading frame of Tc1 is conserved among Tc1, Tcb1, and Tcb2. Comparison of the first 550 nucleotides of the sequence among the three elements has allowed the evaluation of a model proposing an extension of the major open reading frame. Our data support the suggestion that Tc1 is capable of producing a 335 amino acid protein. A comparison of the sequence coding for the amino and carboxy termini of the 273 amino acid transposase from Caenorhabditis Tc1-like elements and Drosophila HB1 showed different amounts of divergence for each of these regions, indicating that the two functional domains have undergone different amounts of selection. Our data are not compatible with the proposal that Tc1-related sequences have been acquired via horizontal transmission. The divergence of Tc1 from the two C. briggsae elements, Tcb1 and Tcb2, indicated that all three elements have been diverging from each other for approximately the same amount of time as the genomes of the two species.  相似文献   

14.
The Tc3 Family of Transposable Genetic Elements in Caenorhabditis Elegans   总被引:14,自引:2,他引:12  
J. Collins  E. Forbes    P. Anderson 《Genetics》1989,121(1):47-55
We describe genetic and molecular properties of Tc3, a family of transposable elements in Caenorhabditis elegans. About 15 Tc3 elements are present in the genomes of several different wild-type varieties of C. elegans, but Tc3 transposition and excision are not detected in these strains. Tc3 transposition and excision occur at high frequencies, however, in strain TR679, a mutant identified because of its highly active Tc1 elements. In TR679, Tc3 is responsible for several spontaneous mutations affecting the unc-22 gene. Tc3-induced mutations are unstable, and revertants result from precise or nearly precise excision of Tc3. Although Tc3 is very active in TR679, it is not detectably active in several other mutator mutants, all of which exhibit high levels of Tc1 activity. Tc3 is 2.5 kilobases long, and except for sequences near its inverted repeat termini, it is unrelated to Tc1. The termini of Tc3 are inverted repeats of at least 70 base pairs; the terminal 8 nucleotides of Tc3 are identical to 8 of the terminal 9 nucleotides of Tc1.  相似文献   

15.
I. Mori  D. G. Moerman    R. H. Waterston 《Genetics》1988,120(2):397-407
The Tc1 transposable element family of the nematode Caenorhabditis elegans consists primarily of 1.6-kb size elements. This uniformity of size is in contrast to P in Drosophila and Ac/Ds in maize. Germline transposition and excision of Tc1 are detectable in the Bergerac (BO) strain, but not in the commonly used Bristol (N2) strain. A previous study suggested that multiple genetic components are responsible for the germline Tc1 activity of the BO strain. To analyze further this mutator activity, we derived hybrid strains between the BO strain and the N2 strain. One of the hybrid strains exhibits a single locus of mutator activity, designated mut-4, which maps to LGI. Two additional mutators, mut-5 II and mut-6 IV, arose spontaneously in mut-4 harboring strains. This spontaneous appearance of mutator activity at new sites suggests that the mutator itself transposes. The single mutator-harboring strains with low Tc1 copy number generated in this study should be useful in investigations of the molecular basis of mutator activity. As a first step toward this goal, we examined the Tc1 elements in these low copy number strains for elements consistently co-segregating with mutator activity. Three possible candidates were identified: none was larger than 1.6 kb.  相似文献   

16.
We report the complete nucleotide sequence of the transposable element Uhu from the vicinity of the alcohol dehydrogenase (Adh) gene of Drosophila heteroneura (an endemic Hawaiian Drosophila). The complete element is about 1650 base-pairs (bp) long, has 46-50 base-pair inverse imperfect repeats at it's ends, and contains a large open reading frame potentially encoding a 192 amino acid protein. We demonstrate that Uhu belongs to a class of transposable elements which includes Tc1 from Caenorhabditis elegans, Barney from Caenorhabditis briggsae, and HB1 from Drosophila melanogaster. All of these elements share significant sequence similarity, are approximately 1600 base pairs long, have short inverse terminal repeats (ITRs), contain open reading frames (ORFs) with significant sequence identity, and appear to insert specifically at TA sequences generating target site duplications.  相似文献   

17.
The genome of the nitrogen-fixing symbiont, Rhizobium fredii USDA257, contains nine copies of repetitive sequences known as the R. fredii repetitive sequence (RFRS) family. We previously sequenced RFRS3, which is linked to symbiosis plasmid-borne nodulation genes of this organism and has substantial homology to the T-DNA of Agrobacterium rhizogenes and lesser homology to reiterated sequences of Bradyrhizobium japonicum. Here we characterize a second family member, RFRS9. The EcoRI fragment containing RFRS9 is 1,248 bp in length and contains a single 666-bp open reading frame that is flanked by perfect 8-bp inverted repeats. Nucleic and amino acid sequences corresponding to the C terminus of the putative RFRS9 protein are nearly identical to those of RFRS3, and they retain homology to DNA from A. rhizogenes. The central portion of the RFRS9 protein also appears to be related to the S locus-specific glycoprotein family of pollen stigma incompatibility glycoproteins from Brassica oleracea, which are involved in signal perception. Sequences that define the RFRS family are restricted to the open reading frame of RFRS9 and associated upstream sequences. These regions also contain a second group of repetitive sequences, which is present in four copies within the genome of USDA257. Both families of repetitive sequences are ubiquitous in R. fredii, and they are preferentially localized on symbiosis plasmids. Southern hybridization confirms that sequences homologous to RFRS9 are present in broad-host-range Rhizobium sp. strain NGR234, in A. rhizogenes, and in two biotype 3 strains of Agrobacterium tumefaciens.  相似文献   

18.
Extrachromosomal circular copies of the transposon Tc1.   总被引:1,自引:0,他引:1       下载免费PDF全文
The 1.6 kb Tc1 transposable element of Caenorhabditis elegans undergoes excision and transposition in the germline. In somatic tissue it is excised at high frequency. Extrachromosomal linear and circular copies of Tc1 have been identified that are likely to be products of somatic and germline excision. In the present study, we have determined the sequences of the sites of circularization in circular extrachromosomal Tc1 molecules. DNA molecules containing these sites were cloned after PCR amplification with primers directed outward from within Tc1. Sequences were obtained with two complete Tc1 ends and one or more intervening copies of the TA dinucleotide, with one complete end and one deleted end, and with two deleted ends. The 24 clones had different structures, indicating the pool of molecules serving as PCR templates was heterogeneous. The predominant circular junction had one or more nucleotides deleted from at least one transposon end. Such a molecule without two complete ends might not be expected to serve as a transposition intermediate. Hence, some extrachromosomal circular Tc1 molecules may result from a deadend excision pathway.  相似文献   

19.
IS630/Tc1/mariner elements are diverse and widespread within insects. The African malaria mosquito, Anopheles gambiae, contains over 30 families of IS630/Tc1/mariner elements although few have been studied in any detail. To examine the history of Topi elements in An. gambiae populations, Topi elements (n=73) were sampled from five distinct populations of An. gambiae from eastern and western Africa and evaluated with respect to copy number, nucleotide diversity and insertion site-occupancy frequency. Topi 1 and 2 elements were abundant (10-34 per diploid genome) and highly diverse (pi=0.051). Elements from mosquitoes collected in Nigeria were Topi 2 elements and those from mosquitoes collected in Mozambique were Topi 1 elements. Of the 49 Topi transposase open reading frames sequenced none were found to be identical. Intact elements with complete transposase open reading frames were common, although based on insertion site-occupancy frequency data it appeared that genetic drift was the major force acting on these IS630/Tc1/mariner-type elements. Topi 3 elements were not recovered from any of the populations sampled in this study and appear to be rare elements in An. gambiae, possibly due to a recent introduction.  相似文献   

20.
The complete nucleotide sequences of two copies of a putative insertion sequence IS1000 from Thermus thermophilus HB8 are presented. IS1000 is 1196 base pairs long, contains a long open reading frame which could code for a protein of 317 amino acids, and has imperfect terminal inverted repeats of 6 base pairs (confirmed by the terminal sequencing of 4.5 copies of IS1000), but does not cause a target site duplication. There are at least 6 copies of IS1000 in the genome of T. thermophilus HB8. A search of the GEN-EMBL data base revealed that the putative 317 amino acid protein had significant homology with open reading frames in the transposable elements IS110 of Streptomyces coelicolor and IS492 of Pseudomonas atlantica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号