首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A PCR-based survey of allelic polymorphism of three microsatellite markers, DXS998, DXS548, and FRAXAC1, mapped to chromosome region Xp27.3, and two microsatellite markers, DXS8091 and DXS1691 located on Xq28 was carried out using a series of DNA samples obtained from 98 unrelated individuals from Russia. The number of alleles detected on electrophregrams for each marker tested was 4, 6, 4, 5, and 3, respectively. The values of heterozygosity index for the markers examined were 0.65, 0.27, 0.38, 0.70, and 0.29, respectively. The observed distribution of the allelic frequencies for each microsatellite marker examined fitted Hardy--Weinberg expectations. The values of individualization potential determined for each marker were 0.24, 0.53, 0.43, 0.12, and 0.52, respectively. In the sample tested the genotype distribution with regard to above loci was determined. The perspectives of using the analyzed allelic polymorphisms for indirect DNA diagnostics of the monogenic diseases located in this chromosome region (X-linked mental retardations, FRAXA and FRAXE) as well as for human population genetics and personal identification is discussed.  相似文献   

2.
Zhang B  Xia K  Ding M  Liang D  Liu Z  Pan Q  Hu Z  Wu LQ  Cai F  Xia J 《Human genetics》2005,116(1-2):128-131
Congenital motor nystagmus (CMN), a subtype of nystagmus, may reduce vision or be associated with other, more serious, conditions that limit vision. The genetic basis for CMN is still unknown. To identify a locus for CMN, genotyping and linkage analysis were performed in 22 individuals from a Chinese family with X-linked CMN using markers from X chromosome. The maximum LOD score obtained for microsatellite maker DXS1192 linked the CMN locus in this family to Xq. By haplotype construction the locus for CMN was finally localized to an approximately 4.4-cM region at chromosome Xq26.3-q27.1. The SLC9A6 and FGF13 genes in this region, were selected and screened for mutation in this family, but no mutation was detected.B. Zhang and K. Xia contribute to this work equally  相似文献   

3.
Summary The oto-palado-digital syndrome (OPD) is a rare X-linked disease with diagnostic skeletal features, conduction deafness, cleft palate and mild mental retardation. Differences in clinical presentation between families have led investigators to classify OPD into two subtypes: type I and type II. A linkage study performed in one family segregating for OPD I has recently suggested linkage to three marker loci: DXS15, DXS52 at Xq28, and DXS86 at Xq26. We have investigated an additional OPD I family for linkage by using distal chromosome Xq DNA probes. The linkage data and the analysis of recombination events that have occurred in this family excluded, definitively, the Xq26 region for OPD I, and provide further support for mapping the mutant gene close to the cluster of tightly linked markers DXS15, DXS52 and DXS305 at Xq28.  相似文献   

4.
Preimplantation genetic diagnosis (PGD) first consisted of the selection of female embryos for patients at risk of transmitting X-linked recessive diseases. Advances in molecular biology now allow the specific diagnosis of almost any Mendelian disease. For families with an identified X-linked recessive disease-causing mutation, non-specific diagnosis by sex identification can be considered as a sub-standard method, since it involves the unnecessary disposal of healthy male embryos and reduces success rate by diminishing the pool of embryos eligible for transfer. The most telomeric part of the X-chromosome long arm is a highly gene-rich region encompassing disease genes such as haemophilia A, X-linked adrenoleukodystrophy, X-linked hydrocephalus and incontinentia pigmenti. We developed five single-cell triplex amplification protocols with microsatellite markers DXS1073, DXS9901 (BGN), G6PD, DXS1108, DXS8087 and F8C-IVS13 located in this Xq terminal region. These tests allow the diagnosis of all diseases previously mentioned providing that the genetic material allowing the identification of the morbid allele can be obtained. The choice of the microsatellite set to use depends on the localisation of the gene responsible for the diagnosed pathology and on the informativity of the markers in particular families. Single-cell amplification efficiency was assessed on single lymphocytes. Amplification rate of the different markers ranged from 89–97% with an allele drop out rate of 2–19 %. So far PGD has been carried out for three carrier females at risk of transmitting X-linked adrenoleukodystrophy, X-linked hydrocephalus and hemophilia A. The latter one is now pregnant.  相似文献   

5.
We have tested linkage between the locus for the fragile-X [fra(X)] syndrome at Xq27.3 and five polymorphic restriction sites identified by four DNA probes mapping distal to Xq26.1. A maximum distance of approximately 15 centimorgans (cM) between Xq27.3 and the marker loci mapping to this region was predicted based on the physical chromosome length. Close linkage between the disease and marker loci was excluded for probes DXS19 and DXS37 (theta = .05, Z = -2.94 and Z = -4.17, respectively). These marker loci were estimated to be less than five cM apart but approximately 40 cM proximal to the fragile site, indicating that there is a significantly greater frequency of recombination in this region of the X chromosome than expected from the physical length. Linkage results for the other marker loci and the fra(X) syndrome were inconclusive. However, the pX45d probe locus appears very closely linked to the factor IX locus (Z = 1.94 at theta = 0) and is approximately 20 cM proximal to Xq27.3. A relative map of the polymorphic restriction sites, fra(X) syndrome locus, and factor IX locus was constructed by maximizing lod scores over the Xq26.1----q27.3 region.  相似文献   

6.
A new polymorphic DNA marker U6.2, defining the locus DXS304, was recently isolated and mapped to the Xq27 region of the X chromosome. In the previous communication we describe a linkage study encompassing 16 fragile-X families and using U6.2 and five previously described polymorphic markers at Xq26-q28. One recombination event was observed between DXS304 and the fragile-X locus in 36 informative meioses. Combined with information from other reports, our results suggest the following order of the examined loci on Xq: cen-F9-DXS105-DXS98-FRAXA-DXS304-(DXS52-F8 -DXS15). The locus DXS304 is closely linked to FRAXA, giving a peak lod score of 5.86 at a corresponding recombination fraction of .00. On the basis of the present results, it is apparent that U6.2 is a useful probe for carrier and prenatal diagnosis in fragile-X families.  相似文献   

7.
A linkage study of Emery-Dreifuss muscular dystrophy   总被引:5,自引:0,他引:5  
Summary We have searched for linkage between polymorphic loci defined by DNA markers on the X chromosome and X-linked Emery-Dreifuss muscular dystrophy (EDMD). There are high recombination rates between EDMD and the Xp loci known to be linked to Becker and Duchenne muscular dystrophy. There is a suggestion of linkage between EDMD and the loci DXS52 and DXS15, defined by probes St 14 and DX13 respectively, located at Xq28. for DXS15=1.14 at =0.15. This is in agreement with the previously reported linkage between a disorder strongly resembling EDMD and colour-blindness (Thomas et al. 1972), suggesting that there is a second locus on the X chromosome concerned with muscle integrity.  相似文献   

8.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

9.
The locus responsible for X-linked, nonsyndromic cleft palate and/or ankyloglossia (CPX) has previously been mapped to the proximal long arm of the human X chromosome between Xq21.31 and q21.33 in an Icelandic kindred. We have extended these studies by analyzing an additional 14 informative markers in the family as well as including several newly investigated family members. Recombination analysis indicates that the CPX locus is more proximal than previously thought, within the interval Xq21.1-q21.31. Two recombinants place DXYS1X as the distal flanking marker, while one recombinant defines DXS326 as the proximal flanking marker, an interval of less than 5 cM. Each of the flanking markers recombines with the CPX locus, giving 2-point lod scores of Zmax = 4.16 at θ = 0.08 (DXS326) and Zmax = 5.80 at θ = 0.06 (DXYS1X).  相似文献   

10.
The CA repeat microsatellite DXS456, with a heterozygosity of 77%, has been localized by multipoint linkage analysis in relation to 20 other genetic markers. DXS456 mapped to a 4.2-cM interval defined by the flanking markers DXS178 and DXS287. The maximum likelihood order of markers, cen-(DXYS1X/DXYS13X/DXYS2X/DXYS12X)-DXS366 -DXS178-DXS456-DXS287-DXS358-DXS267- qter, is favored by odds greater than 1000:1 over the subset of most likely alternative orders. Linkage of DXS456 can be inferred for at least six disease genes that are known to be linked to markers in the region Xq21.31-Xq25 and the marker will serve as an important index point for orienting these and other disease and marker loci in the region.  相似文献   

11.
Summary The polymorphic DNA marker DXS304 detected by probe U6.2 has recently been shown to be closer to the fragile X locus than previously available markers. Its usefulness has however been limited by its relatively low heterozygosity. We have isolated, by cosmid cloning, a 67 kilobase region around probe U6.2 and have characterized a new probe (U6.2-20E) that detects BanI and BstEII restriction fragment length polymorphisms (RFLPs). The BanI RFLP has a heterozygosity of 0.49 and is in partial linkage disequilibrium with the previously described polymorphism, with a combined heterozygosity of 0.63. Furthermore, we have found that the U6.2 original probe, which probably detects an insertion-deletion polymorphism, is also informative in BanI digests. Thus, the two informative RFLPs at the DXS304 locus can be conveniently tested in a single hybridization with a single digest. An updated linkage analysis confirms that DXS304 is distal to the fragile X locus. This informative locus can now be used effectively for genetic mapping of the Xq27–q28 region, and for diagnostic applications in fragile X or Hunter syndrome families.  相似文献   

12.
Linkage studies in X-linked Alport's syndrome   总被引:1,自引:0,他引:1  
Summary Four kindreds segregating for Alport's syndrome (ASLN) compatible with a X-linked inheritance were studied for linkage with polymorphic markers of the human X chromosome. No recombinant was observed between the ASLN locus and the DXS101 and DXS94 loci, the maximum lod scores were z=3.93 and 3.50 respectively. Linkage data between the ASLN locus and the other genetic markers used in the present study are in keeping with the assignment of the mutation to the proximal Xq arm.  相似文献   

13.
Aarskog syndrome has been mapped to Xq13 on the basis of a patient carrying an Xq13:8p21.2 translocation. We have identified a new microsatellite marker in a clone mapping to this region (HX60;DXS566). Using primers flanking this microsatellite along with primers detecting a microsatellite at PGK1P1 and DXS255, and DXS72, we have performed a multipoint analysis in a large kindred with Aarskog syndrome. Our results suggest that the Aarskog locus lies proximal to Xq13. This is supported by the recent redefining of the breakpoint of the original translocation as between DXS14 (Xp11.21-p11.1) and DXS146 (Xp11.23-p11.22).  相似文献   

14.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

15.
X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests that HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of less than 2 Mb in length, which is now amenable to positional cloning.  相似文献   

16.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

17.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

18.
为确定一个X染色体显性遗传先天性眼球震颤家系的致病基因与X染色体的连锁关系, 选用X染色体上的DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192和DXS1232共8个微卫星DNA标记对该家系进行基因扫描与基因分型,并利用LINKAGE等软件包对基因分型结果进行分析,探讨该家系致病基因与X染色体的连锁关系。 两点连锁分析时X染色体短臂4个基因座最大LOD值均小于-1,不支持与该家系致病基因连锁; X染色体长臂4个基因座中最大LOD值达到2,提示存在较大的连锁可能性。该家系的致病基因可初步定位于X染色体长臂,且提示Xq26-Xq28区间附近可能是先天性眼球震颤一个共同的致病基因座,但区间范围仍较大,仍须进一步选择合适的微卫星标记进行精确的定位以缩小候选基因的筛查范围。Abstract: To investigate the relationship between X chromosome and obligatory gene of a pedigree with congenital nystagmus,we used the following markers: DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192 and DXS1232.Genome screening and genotyping were conducted in this pedigree of congenital nystagmus, and linkage analysis by LINKAGE package was used to determine the potential location. The linkage was not found on the Xp ( All LOD score <-1) but on Xq (the maximum LOD score=2). The related gene of this pedigree was located on the long arm of X chromosome. We demonstrate that Xq26-Xq28 is a common locus for CMN. It bring us closer to the identification of a gene responsible for X-linked CMN.  相似文献   

19.
The gene for the neural cell adhesion molecule L1 (L1CAM) has been shown to be located close to the color vision pigment genes in mouse and man. This location has been confirmed by a number of different mapping strategies in both species. With pulsed field gel electrophoresis it has been proposed that L1CAM lies between the RCP, GCP, and GDX, G6PD loci. We report here a reinterpretation of the location of this gene, based on the physical linkage of L1CAM to the more proximal locus DXS15. This places L1CAM between this marker and the color vision genes (RCP, GCP), a region very dense in CpG islands, expected to contain a large fraction of the disease genes assigned to the Xq28 region. In combination with the physical mapping data on Xq28 described previously, this closes the last remaining gap in the map of the Xq27–Xq28 region. This removes the last contradiction between the maps of this region in the genomes of man and mouse, and confirms the close similarity of order and distances of markers between these organisms. Offprint requests to: C.M. Disteche  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号