首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term potentiation in the hippocampus can be enhanced and prolonged by dopaminergic inputs from midbrain structures such as the substantia nigra. This improved synaptic plasticity is hypothesized to be associated with better memory consolidation in the hippocampus. We used a condition that reliably elicits a dopaminergic response, reward anticipation, to study the relationship between activity of dopaminergic midbrain areas and hippocampal long-term memory in healthy adults. Pictures of object drawings that predicted monetary reward were associated with stronger fMRI activity in reward-related brain areas, including the substantia nigra, compared with non-reward-predicting pictures. Three weeks later, recollection and source memory were better for reward-predicting than for non-reward-predicting pictures. FMRI activity in the hippocampus and the midbrain was higher for reward-predicting pictures that were later recognized compared with later forgotten pictures. These data are consistent with the hypothesis that activation of dopaminergic midbrain regions enhances hippocampus-dependent memory formation, possibly by enhancing consolidation.  相似文献   

2.
The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.  相似文献   

3.
Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation.  相似文献   

4.
Wais PE  Wixted JT  Hopkins RO  Squire LR 《Neuron》2006,49(3):459-466
The receiver operating characteristic (ROC) has been used to investigate the component processes of recognition memory. Some studies with this technique have been taken to indicate that the hippocampus selectively supports the process of recollection, whereas adjacent cortex in the parahippocampal gyrus supports the process of familiarity. We analyzed ROC data from young adults, memory-impaired patients with limited hippocampal lesions, and age-matched controls. The shape of the ROC changed in similar ways from asymmetric to symmetric, as a function of the strength of memory (strong to weak) in both the young adults and the patients. Moreover, once overall memory strength was similar, the shape of the patient ROC was asymmetric and matched the control ROC. These results suggest that the component processes that determine the shape of the ROC are operative in the absence of the hippocampus, and they argue against the idea that the hippocampus selectively supports the recollection process.  相似文献   

5.
Anterior/posterior long axis specialization is thought to underlie the organization of the hippocampus. However it remains unclear whether antagonistic mechanisms differentially modulate processing of spatial information within the hippocampus. We used fMRI and a virtual reality 3D paradigm to study encoding and retrieval of spatial memory during active visuospatial navigation, requiring positional encoding and retrieval of object landmarks during the path. Both encoding and retrieval elicited BOLD activation of the posterior most portion of hippocampus, while concurrent deactivations (recently shown to reflect decreases in neural responses) were found in the most anterior regions. Encoding elicited stronger activity in the posterior right than the left hippocampus. The former structure also showed significantly stronger activity for allocentric vs. egocentric processing during retrieval. The anterior vs. posterior pattern mimics, from a functional point, although at much distinct temporal scales, the previous anatomical findings in London taxi drivers, whereby posterior enlargement was found at the cost of an anterior decrease, and the mirror symmetric findings observed in blind people, in whom the right anterior hippocampus was found to be larger, at the cost of a smaller posterior hippocampus, as compared with sighted people. In sum, we found a functional dichotomy whereby the anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and retrieval of 3D spatial information. To our knowledge, this is the first study reporting such a dynamical pattern in a functional study, which suggests that differential modulation of neural responses within the human hippocampus reflects distinct roles in spatial memory processing.  相似文献   

6.
The aim of the present volumetric study was to explore the neuro-anatomical correlates of autobiographical memory loss in Alzheimer''s patients and healthy elderly, in terms of the delay of retention, with a particular interest in the medial temporal lobe structures. Fifteen patients in early stages of the disease and 11 matched control subjects were included in the study. To assess autobiographical memory and the effect of the retention delay, a modified version of the Crovitz test was used according to five periods of life. Autobiographical memory deficits were correlated to local atrophy via structural MRI using Voxel Based Morphometry. We used a ‘lateralized index’ to compare the relative contribution of hippocampal sub-regions (anterior vs posterior, left vs right) according to the different periods of life. Our results confirm the involvement of the hippocampus proper in autobiographical memory retrieval for both recent and very remote encoding periods, with larger aspect for the very remote period on the left side. Contrary to the prominent left-sided involvement for the young adulthood period, the implication of the right hippocampus prevails for the more recent periods and decreases with the remotness of the memories, which might be associated with the visuo-spatial processing of the memories. Finally, we suggest the existence of a rostrocaudal gradient depending on the retention duration, with left anterior aspects specifically related to retrieval deficits of remote memories from the young adulthood period, whereas posterior aspects would result of simultaneous encoding and/or consolidation and retrieval deficit of more recent memories.  相似文献   

7.
Cognitive neuroscience approaches to memory attempt to elucidate the brain processes and systems that are involved in different forms of memory and learning. This paper examines recent research from brain-damaged patients and neuroimaging studies that bears on the distinction between explicit and implicit forms of memory. Explicit memory refers to conscious recollection of previous experiences, whereas implicit memory refers to the non-conscious effects of past experiences on subsequent performance and behaviour. Converging evidence suggests that an implicit form of memory known as priming is associated with changes in posterior cortical regions that are involved in perceptual processing; some of the same regions may contribute to explicit memory. The hippocampal formation and prefrontal cortex also play important roles in explicit memory. Evidence is presented from recent PET scanning studies that suggests that frontal regions are associated with intentional strategic efforts to retrieve recent experiences, whereas the hippocampal formation is associated with some aspect of the actual recollection of an event.  相似文献   

8.
Episodic memory deficits are frequent symptoms in Multiple Sclerosis and have been associated with dysfunctions of the hippocampus, a key region for learning. However, it is unclear whether genetic factors that influence neural plasticity modulate episodic memory in MS. We thus studied how the Brain Derived Neurotrophic Factor Val66Met genotype, a common polymorphism influencing the hippocampal function in healthy controls, impacted on brain networks underlying episodic memory in patients with Multiple Sclerosis. Functional magnetic resonance imaging was used to assess how the Brain Derived Neurotrophic Factor Val66Met polymorphism modulated brain regional activity and functional connectivity in 26 cognitively unimpaired Multiple Sclerosis patients and 25 age- and education-matched healthy controls while performing an episodic memory task that included encoding and retrieving visual scenes. We found a highly significant group by genotype interaction in the left posterior hippocampus, bilateral parahippocampus, and left posterior cingulate cortex. In particular, Multiple Sclerosis patients homozygous for the Val66 allele, relative to Met66 carriers, showed greater brain responses during both encoding and retrieval while the opposite was true for healthy controls. Furthermore, a robust group by genotype by task interaction was detected for the functional connectivity between the left posterior hippocampus and the ipsilateral posterior cingulate cortex. Here, greater hippocampus-posterior cingulate cortex connectivity was observed in Multiple Sclerosis Met66 carriers relative to Val66 homozygous during retrieval (but not encoding) while, again, the reverse was true for healthy controls. The Val66Met polymorphism has opposite effects on hippocampal circuitry underlying episodic memory in Multiple Sclerosis patients and healthy controls. Enhancing the knowledge of how genetic factors influence cognitive functions may improve the clinical management of memory deficits in patients with Multiple Sclerosis.  相似文献   

9.
The contribution of lateral parietal regions such as the angular gyrus to human episodic memory has been the subject of much debate following widespread observations of left parietal activity in healthy volunteers during functional neuroimaging studies of memory retrieval. Patients with lateral parietal lesions are not amnesic, but recent evidence indicates that their memory abilities may not be entirely preserved. Whereas recollection appears intact when objective measures such as source accuracy are used, patients often exhibit reduced subjective confidence in their accurate recollections. When asked to recall autobiographical memories, they may produce spontaneous narratives that lack richness and specificity, but can remember specific details when prompted. Two distinct theoretical accounts have been proposed to explain these results: that the patients have a deficit in the bottom-up capturing of attention by retrieval output, or that they have an impairment in the subjective experience of recollection. The present study aimed to differentiate between these accounts using continuous theta burst stimulation (cTBS) in healthy participants to disrupt function of specific left parietal subregions, including angular gyrus. Inconsistent with predictions of the attentional theory, angular gyrus cTBS did not result in greater impairment of free recall than cued recall. Supporting predictions of the subjective recollection account, temporary disruption of angular gyrus was associated with highly accurate source recollection accuracy but a selective reduction in participants’ rated source confidence. The findings are consistent with a role for angular gyrus in the integration of memory features into a conscious representation that enables the subjective experience of remembering.  相似文献   

10.
Shrager Y  Kirwan CB  Squire LR 《Neuron》2008,59(4):547-553
It has been suggested that hippocampal activity predicts subsequent recognition success when recognition decisions are based disproportionately on recollection, whereas perirhinal activity predicts recognition success when decisions are based primarily on familiarity. Another perspective is that both hippocampal and perirhinal activity are predictive of overall memory strength. We tested the relationship between brain activity during learning and subsequent memory strength. Activity in a number of cortical regions (including regions within the "default network") was negatively correlated with subsequent memory strength, suggesting that this activity reflects inattention or mind wandering (and, consequently, poor memory). In contrast, activity in both hippocampus and perirhinal cortex positively correlated with the subsequent memory strength of remembered items. This finding suggests that both structures cooperate during learning to determine the memory strength of what is being learned.  相似文献   

11.
BackgroundIron plays a critical role in normal brain functions and development, but it has also been known to have adverse neurological effects.MethodsHere, we investigated the associations of iron levels in hair with regional gray matter volume (rGMV), regional cerebral blood flow (rCBF), fractional anisotropy (FA), mean diffusivity (MD), and cognitive differences in a study cohort of 590 healthy young adults.ResultsOur findings showed that high iron levels were associated with lower rGMV in areas including the hippocampus, lower rCBF in the anterior and posterior parts of the brain, greater FA in areas including the part of the splenium of the corpus callosum, lower MD in the overlapping area including the splenium of the corpus callosum, as well as greater MD in the left hippocampus and areas including the frontal lobe.ConclusionThese results are compatible with the notion that iron plays diverse roles in neural mechanisms in healthy young adults.  相似文献   

12.
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.  相似文献   

13.
Jäger T  Mecklinger A  Kipp KH 《Neuron》2006,52(3):535-545
Single-process models of recognition memory posit that recognizing is based on a unidimensional value of global memory strength. By contrast, dual-process models propose the existence of two independent processes subserving the explicit recognition of previously encountered episodes, namely "familiarity" and "recollection." Familiarity represents a noncontextual form of recognition that may only support the retrieval of associative information when the to-be-associated information can be unitized, such as when two photographs depicting the same person are memorized (intra-item associations). Conversely, recollection enables retrieving associations between arbitrarily linked information, such as associations between photographs of different persons (inter-item associations). By measuring event-related brain potentials (ERPs), we obtained a double dissociation of familiarity and recollection that strongly favors dual-process accounts of recognition memory: the electrophysiological correlate of familiarity was significantly larger for intra- than for inter-item associations. Conversely, the electrophysiological correlate of recollection was significantly larger for inter- than for intra-item associations.  相似文献   

14.
Li R  Qin W  Zhang Y  Jiang T  Yu C 《PloS one》2012,7(2):e31877
Digits backward (DB) is a widely used neuropsychological measure that is believed to be a simple and effective index of the capacity of the verbal working memory. However, its neural correlates remain elusive. The aim of this study is to investigate the neural correlates of DB in 299 healthy young adults by combining voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses. The VBM analysis showed positive correlations between the DB scores and the gray matter volumes in the right anterior superior temporal gyrus (STG), the right posterior STG, the left inferior frontal gyrus and the left Rolandic operculum, which are four critical areas in the auditory phonological loop of the verbal working memory. Voxel-based correlation analysis was then performed between the positive rsFCs of these four clusters and the DB scores. We found that the DB scores were positively correlated with the rsFCs within the salience network (SN), that is, between the right anterior STG, the dorsal anterior cingulate cortex and the right fronto-insular cortex. We also found that the DB scores were negatively correlated with the rsFC within an anti-correlation network of the SN, between the right posterior STG and the left posterior insula. Our findings suggest that DB performance is related to the structural and functional organizations of the brain areas that are involved in the auditory phonological loop and the SN.  相似文献   

15.
目的:针对不同COMT基因型健康青年被试,进行连续3-back任务1h共12Block,探讨健康成人数字工作记忆能力变化情况。方法:将112名健康青年分组抽取出18名不同基因型作为被试,利用视觉事件相关电位P3来观测被试连续工作记忆任务中COMT基因多态型与脑皮层电生理的关系。结果:Val/Val基因型的被试P3波幅显著高于Val/Met基因型(P<0.01),但和Met/Met基因型被试的波幅无差异。结论:Val/Met基因型被试关联着最差的工作记忆任务的成绩,被试者的P3波幅和3-back任务成绩成正相关。  相似文献   

16.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

17.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

18.
Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.  相似文献   

19.
It has been hypothesized that memory-demanding ecological conditions might result in enhanced memory and an enlarged hippocampus, an area of the brain involved in memory processing, either via extensive memory experience or through evolutionary changes. Avian migration appears to represent one of such memory-demanding ecological conditions. We compared two subspecies of the white-crowned sparrow: migratory Zonotrichia leucophrys gambelii and non-migratory Z. l. nuttalli. Compared to non-migratory Z. l. nuttalli, migratory Z. l. gambelii showed better memory performance on spatial one-trial associative learning tasks and had more hippocampal neurons. Migratory subspecies also had larger hippocampi relative to the remainder of the telencephalon but not relative to body mass. In adults, the differences between migratory and non-migratory sparrows were especially pronounced in the right hippocampus. Juvenile migratory Z. l. gambelii had relatively larger hippocampal volume compared to juvenile non-migratory Z. l. nuttalli. Adult migratory Z. l. gambelii had more neurons in their right hippocampus compared to juveniles but such differences were not found in non-migratory Z. l. nuttalli. Our results suggest that migratory behaviour might be related to enhanced spatial memory and an enlarged hippocampus with more neurons, and that differences in the hippocampus between migratory and non-migratory sparrows might be experience-dependent. Furthermore, for the first time our results suggest that the right hippocampus, which encodes global spatial information, might be involved in migratory behaviour.  相似文献   

20.
Recognition memory is widely viewed as consisting of two components, recollection and familiarity, which have been proposed to be dependent on the hippocampus and the adjacent perirhinal cortex, respectively. Here, we propose an alternative perspective: we suggest that the methods traditionally used to separate recollection from familiarity instead separate strong memories from weak memories. A review of work with humans, monkeys and rodents finds evidence for familiarity signals (as well as recollection signals) in the hippocampus and recollection signals (as well as familiarity signals) in the perirhinal cortex. We also indicate ways in which the functions of the medial temporal lobe structures are different, and suggest that these structures work together in a cooperative and complementary way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号