首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared a conventional pull-up and chin-up with a rotational exercise using Perfect·Pullup? twisting handles. Twenty-one men (24.9 ± 2.4 years) and 4 women (23.5 ± 1 years) volunteered to participate. Electromyographic (EMG) signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz. The EMG signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Motion analysis data of the elbow were obtained using Vicon Nexus software. One-factor repeated measures analysis of variance examined the muscle activation patterns and kinematic differences between the 3 pull-up exercises. Average EMG muscle activation values (%MVIC) were as follows: latissimus dorsi (117-130%), biceps brachii (78-96%), infraspinatus (71-79%), lower trapezius (45-56%), pectoralis major (44-57%), erector spinae (39-41%), and external oblique (31-35%). The pectoralis major and biceps brachii had significantly higher EMG activation during the chin-up than during the pull-up, whereas the lower trapezius was significantly more active during the pull-up. No differences were detected between the Perfect·Pullup? with twisting handles and the conventional pull-up and chin-up exercises. The mean absolute elbow joint range of motion was 93.4 ± 14.6°, 100.6 ± 14.5°, and 99.8 ± 11.7° for the pull-up, chin-up, and rotational exercise using the Perfect·Pullup? twisting handles, respectively. For each exercise condition, the timing of peak muscle activation was expressed as a percentage of the complete pull-up cycle. A general pattern of sequential activation occurred suggesting that pull-ups and chin-ups were initiated by the lower trapezius and pectoralis major and completed with biceps brachii and latissimus dorsi recruitment. The Perfect·Pullup? rotational device does not appear to enhance muscular recruitment when compared to the conventional pull-up or chin-up.  相似文献   

2.
The aim of this study was to determine the effect of isometric pull down exercise on muscle activity with shoulder elevation angles of 60°, 90°, and 120° and sagittal, scapular, and frontal movement planes, by electromyography (EMG) of the latissimus dorsi, inferior fibers of trapezius, and latissimus dorsi/inferior fibers of trapezius activity ratio. Fourteen men performed nine conditions of isometric pull down exercise (three conditions of shoulder elevation × three conditions of movement planes). Surface EMG was used to collect data from the latissimus dorsi and inferior fibers of trapezius during exercise. Two-way repeated analysis of variance with two within-subject factors (shoulder elevation angles and planes of movement) was used to determine the significance of the latissimus dorsi and inferior fibers of trapezius activity and latissimus dorsi/inferior fibers of trapezius activity ratio. The latissimus dorsi activity and ratio between the latissimus dorsi and the inferior fibers of trapezius were significantly decreased as shoulder elevation angle increased from 60° to 120°. The inferior fibers of trapezius activity was significantly increased with shoulder elevation angle. The EMG activity and the ratios were not affected by changes in movement planes. This study suggests that selective activation of the latissimus dorsi is accomplished with a low shoulder elevation angle, while the inferior fibers of the trapezius are activated with high shoulder elevation angles.  相似文献   

3.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

4.
This study compared the standing cable press (SCP) and the traditional bench press (BP) to better understand the biomechanical limitations of pushing from a standing position together with the activation amplitudes of trunk and shoulder muscles. A static biomechanical model (4D Watbak) was used to assess the forces that can be pushed with 2 arms in a standing position. Then, 14 recreationally trained men performed 1 repetition maximum (1RM) BP and 1RM single-arm SP exercises while superficial electromyography (EMG) of various shoulder and torso muscles was measured. The 1RM BP performance resulted in an average load (74.2 +/- 17.6 kg) significantly higher than 1RM single-arm SP (26.0 +/- 4.4 kg). In addition, the model predicted that pushing forces from a standing position under ideal mechanical conditions are limited to 40.8% of the subject's body weight. For the 1RM BP, anterior deltoid and pectoralis major were more activated than most of the trunk muscles. In contrast, for the 1RM single-arm SP, the left internal oblique and left latissimus dorsi activities were similar to those of the anterior deltoid and pectoralis major. The EMG amplitudes of pectoralis major and the erector muscles were larger for 1RM BP. Conversely, the activation levels of left abdominal muscles and left latissimus dorsi were higher for 1RM right-arm SP. The BP emphasizes the activation of the shoulder and chest muscles and challenges the capability to develop great shoulder torques. The SCP performance also relies on the strength of shoulder and chest musculature; however, it is whole-body stability and equilibrium together with joint stability that present the major limitation in force generation. Our EMG findings show that SCP performance is limited by the activation and neuromuscular coordination of torso muscles, not maximal muscle activation of the chest and shoulder muscles. This has implications for the utility of these exercise approaches to achieve different training goals.  相似文献   

5.
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers.Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury.  相似文献   

6.
Myosin heavy chains prepared from the pectoralis major and from the posterior latissimus dorsi of the same adult chicken exhibit different peptide maps when cleaved with Staphylococcus aureus V8 protease. These differences were observed at five different enzyme concentrations and in chickens of various strains. The cleavage pattern of pectoralis major myosin heavy chain from different adult chickens was always identical, as was that of posterior latissimus dorsi myosin heavy chain, demonstrating the reproducibility of the technique. However, when RNAs extracted from the pectoralis major and from the posterior latissimus dorsi were translated in a cell-free reticulocyte lysate, the myosin heavy chain encoded by pectoralis major RNA and the myosin heavy chain encoded by posterior latissimus dorsi RNA exhibited identical peptide maps. These results suggest that the different peptide maps of myosin heavy chains from the pectoralis major and posterior latissimus dorsi may arise from posttranslational modifications.  相似文献   

7.
Respiratory muscle activity during vocalization in the squirrel monkey.   总被引:2,自引:0,他引:2  
In order to find out which muscles are involved in the respiratory component of primate phonation, the activity of 17 abdominal and thoracic muscles was recorded during vocalization in the squirrel monkey. Vocalization-correlated activity was found in the musculi obliquus externus et internus, rectus et transversus abdominis, intercostalis externus et internus and intercartilagineus. It was lacking in the mm. iliocostalis, latissimus dorsi, longissimus dorsi rhomboideus, serratus posterior superior, trapezius, splenius capitis, sternocleidomastoideus, scalenus medius and pectoralis major. There was simultaneous activation of the rib-raising external and rib-lowering internal intercostal muscles during most vocalizations. It is hence concluded that the intercostals, rather than supporting expiratory efforts, serve to stabilize the thorax, thus providing an anchorage against which the abdominal muscles can act.  相似文献   

8.
Electromyography of trunk muscles in isometric graded axial rotation.   总被引:2,自引:0,他引:2  
This study was conducted to determine the pattern, magnitude, and phasic inter-relationship of the trunk muscles in maximal isometric and graded isometric axial rotational contractions and compare them with those previously observed from the same subjects in the same experimental session in dynamic conditions. In 50 normal young healthy subjects (27 male and 23 female), after a suitable skin preparation, bipolar silver-silver chloride recessed pregelled surface electrodes were placed on external oblique, internal oblique, rectus abdominis, pectoralis major, latissimus dorsi, erector spinae at T(10) and L(3) levels bilaterally with 2 cm interelectrode distance. EMG signals from grounded subjects were suitably preamplified and amplified by a fully isolated system. These subjects were stabilized in an upright-seated posture in the Axial Rotation Tester (AROT), which was placed in isometric mode for force and rotation output from the AROT. The 14 channels of EMG, the force and the rotation were sampled at 1 kHz. The subjects initially registered their isometric maximal voluntary contraction (MVC) on both sides which was used for reference and then performed their 25%, 50% and 75% of MVC bilaterally in an isometric mode in a random order. The EMG magnitude, the slope of the rise of the EMG, and the phasic interrelationship of muscles were analyzed. The results showed that female sample generated only 65% of torque of their male counterparts. There were no significant differences between the male and the female samples in the EMG variables. Exertions to the left and to the right were not significantly different from each other for the measured variables. However, the magnitude contribution of the muscles and the slope of rise of EMG were significantly different in two directions (p<0.001). The phasic interrelationship of the external obliques, the latissimus dorsi and the erector spinae were different from other muscles (p<0.01). With the increasing grades of contraction the latissimus dorsi and the external obliques increased their magnitude significantly whereas that of the erectores spinae underwent a decrease in proportionate terms (but not in absolute magnitude) suggesting their role as stabilizers but not as rotators.  相似文献   

9.
The aim of this study was to determine the effect of isometric horizontal abduction using Thera-Band during three exercises (forward flexion, scaption, and wall push-up plus) in subjects with scapular winging by investigating the electromyographic (EMG) amplitude of the pectoralis major, serratus anterior and the pectoralis major/serratus anterior activity ratio. Twenty-four males with scapular winging participated in this study. The subjects performed the forward flexion, scaption, and wall push-up plus with and without isometric horizontal abduction using Thera-Band. Surface EMG was used to collect the EMG data of the pectoralis major and serratus anterior during the three exercises. Two-way repeated analyses of variance with two within-subject factors (isometric horizontal abduction condition and exercise type) were used to determine the statistical significance of pectoralis major and serratus anterior EMG activity and the pectoralis major/serratus anterior EMG activity ratio. Pectoralis major EMG activity was significantly lower during forward flexion and wall push-up plus with isometric horizontal abduction, and serratus anterior EMG activity was significantly greater with isometric horizontal abduction. Additionally, the pectoralis major/serratus anterior activity ratio was significantly lower during the forward flexion and wall push-up plus with isometric horizontal abduction. The results of this study suggest that isometric horizontal abduction using Thera-Band can be used as an effective method to facilitate the serratus anterior activity and to reduce excessive pectoralis major activity during exercises for activating serratus anterior.  相似文献   

10.
Swiss Balls used as a platform for training provide an unstable environment for force production. The objective of this study was to measure differences in force output and electromyographic (EMG) activity of the pectoralis major, anterior deltoid, triceps, latissimus dorsi, and rectus abdominus for isometric and dynamic contractions under stable and unstable conditions. Ten healthy male subjects performed a chest press while supported on a bench or a ball. Unstable isometric maximum force output was 59.6% less than under stable conditions. However, there were no significant differences in overall EMG activity between the stable and unstable protocols. Greater EMG activity was detected with concentric vs. eccentric or isometric contractions. The decreased balance associated with resistance training on an unstable surface may force limb musculature to play a greater role in joint stability. The diminished force output suggests that the overload stresses required for strength training necessitate the inclusion of resistance training on stable surfaces.  相似文献   

11.
Popular fitness literature suggests that varied hand placements during push-ups may isolate different muscles. Scientific literature, however, offers scant evidence that varied hand placements elicit different muscle responses. This study examined whether different levels of electromyographic (EMG) activity in the pectoralis major and triceps brachii muscles are required to perform push-ups from each of 3 different hand positions: shoulder width base, wide base, and narrow base hand placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each push-up. The EMG activity for subjects' dominant arm pectoralis major and triceps brachii was recorded using surface electrodes. The EMG activity was greater in both muscle groups during push-ups performed from the narrow base hand position compared with the wide base position (p < 0.05). This study suggests that, if a goal is to induce greater muscle activation during exercise, then push-ups should be performed with hands in a narrow base position compared with a wide base position.  相似文献   

12.
BACKGROUND: Exercise beliefs abound regarding variations in strength training techniques on muscle activation levels yet little research has validated these ideas. The purpose of the study is to determine muscle activation level, expressed as a percent of a normalization contraction, of the latissimus dorsi, biceps brachii and middle trapezius/rhomboids muscle groups during a series of different exercise tasks. METHODS: The average muscle activity during four tasks; wide grip pulldown, reverse grip pull down [RGP], seated row with retracted scapula, and seated rows with non-retracted scapulae was quantified during two 10 second isometric portions of the four exercises. A repeated measures ANOVA with post-hoc Tukey test was used to determine the influence of exercise type on muscle activity for each muscle. RESULTS & DISCUSSION: No exercise type influenced biceps brachii activity. The highest latissimus dorsi to biceps ratio of activation occurred during the wide grip pulldown and the seated row. Highest levels of myoelectric activity in the middle trapezius/rhomboid muscle group occurred during the seated row. Actively retracting the scapula did not influence middle trapezius/rhomboid activity. CONCLUSION: Variations in latissimus dorsi exercises are capable of producing small changes in the myoelectric activity of the primary movers.  相似文献   

13.
The shoulder muscles are highly solicited in pole vaulting and may afford energy gain. The objective of this study was to determine the bilateral muscle activity of the upper-limbs to explain the actions performed by the vaulter to bend the pole and store elastic energy. Seven experienced athletes performed 5-10 vaults which were recorded using two video cameras (50Hz). The mechanical energy of the centre of gravity (CG) was computed, while surface electromyographic (EMG) profiles were recorded from 5 muscles bilateral: deltoideus, infraspinatus, biceps brachii, triceps, and latissimus dorsi muscles. The level of intensity from EMG profile was retained in four sub phases between take-off (TO1) and complete pole straightening (PS). The athletes had a mean mechanical energy gain of 22% throughout the pole vault, while the intensities of deltoideus, biceps brachii, and latissimus dorsi muscles were sub phases-dependent (p<0.05). Stabilizing the glenohumeral joint (increase of deltoideus and biceps brachii activity) and applying a pole bending torque (increase of latissimus dorsi activity) required specific muscle activation. The gain in mechanical energy of the vaulter could be linked to an increase in muscle activation, especially from latissimusdorsi muscles.  相似文献   

14.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

15.
The distribution of glycogen, lipids and succinic dehydrogenase (SDH) in twitch and tonus fibers of several amphibians and birds is described, and the correlation of histochemical properties with fiber structure and function is discussed. Twitch and tonus fibers were identified histologically by the presence of Fibrillenstruktur and Felderstruktur respectively. The rectus abdominis, sartorius and semitendinosus were studied in Rana pipiens, Xenopus laevis and Necturus maculosus; the pectoralis major, pectoralis minor, anterior latissimus dorsi and posterior latissimus dorsi were investigated in Gallus gallus and Passer domesticus. Periodic acid-Schiff was used to stain for glycogen, Sudan Black B for lipids and Nitro BT for localization of SDH activity. In amphibian muscles, fibers with Fibrillenstruktur and Felderstruktur constitute the rectus abdominis. Except in one case, only Fibrillenstruktur fibers were seen in the sartorius and semitendinosus. In the avian muscles, fibers with Fibrillenstruktur comprise the pectoralis major, pectoralis minor and posterior latissimus dorsi, while fibers with Felderstruktur constitute the anterior latissimus dorsi. These types of muscle fibers showed no consistent pattern in the distribution of glycogen, lipids and SDH. The evidence precludes the use of such data alone for distinguishing twitch (Fibrillenstruktur) and tonus (Felderstruktur) fibers.  相似文献   

16.
This study aimed at investigating the effects of different hand positions on the electromyographic (EMG) activity of shoulder muscles during the performance of the lat pull-down exercise. Ten healthy men performed 3 repetitions of the lat pull-down exercise using their experimentally determined 10RM (repetition maximum) weight. Four different common variations of the lat pull-down were used: close grip (CG), supinated grip (SG), wide grip anterior (WGA), and wide grip posterior (WGP). Normalized root mean square of the EMG (NrmsEMG) activity for the right posterior deltoid (PD), latissimus dorsi (LD), pectoralis major (PM), teres major (TM), and long head of the triceps (TLH) were recorded using surface electrodes and normalized using maximum voluntary contractions. Repeated measures analysis of variance for each muscle detected statistical differences (p < 0.05) in myoelectric activity among hand positions during both the concentric and eccentric phases of the exercise. During the concentric phase, NrmsEMG results for the LD included WGA > WGP, SG, CG. For the TLH: WGA > WGP, SG, CG and WGP > CG, SG. For the PD: CG, WGA, SG > WGP. For the PM: CG, WGA, SG > WGP. During the eccentric phase, the LD produced the following patterns: WGA > WGP, SG, CG and WGP > CG. The TLH pattern showed WGA > SG and CG. For the PD: CG > WGA, WGP. The results indicate that changes in handgrip position affect the activities of specific muscles during the lat pull-down movement. Also, performance of the lat pull-down exercise using the WGA hand position produces greater muscle activity in the LD than any other hand position during both the concentric or eccentric phases of the movement.  相似文献   

17.
In order to refine the concept of brachiation as a locomotor mode and to examine the complex relationship between locomotor behavior and muscle morphology, we have undertaken a telemetered electromyographic (EMG) analysis of muscle recruitment in brachiating gibbons (Hylobates lar) and spider monkeys (Ateles belzebuth andAteles fusciceps) Electrical activity patterns were determined for both support and swing phases in the following muscles: cranial pectoralis major, caudal pectoralis major, middle deltoideus, short head of biceps brachii, flexor digitorum superficialis, latissimus dorsi, and dorsoepitrochlearis. Our experimental findings reinforce earlier behavioral observations that brachiation is not a discrete, stereotyped locomotor activity. EMG patterns differed most between gibbon and spider monkey in those muscles that exhibit markedly disparate morphologies in the two genera-pectoralis major (both portions) and the short head of biceps brachii. Additional recruitment differences appear related to consistent species-specific differences in the timing and mechanics of both support and swing phases, and probably to the role of the prehensile tail as a fail-safe mechanism in the spider monkey.  相似文献   

18.
Exercise or Swiss balls are increasingly being used with conventional resistance exercises. There is little evidence supporting the efficacy of this approach compared to traditional resistance training on a stable surface. Previous studies have shown that force output may be reduced with no change in muscle electromyography (EMG) activity while others have shown increased muscle EMG activity when performing resistance exercises on an unstable surface. This study compared 1RM strength, and upper body and trunk muscle EMG activity during the barbell chest press exercise on a stable (flat bench) and unstable surface (exercise ball). After familiarization, 13 subjects underwent testing for 1RM strength for the barbell chest press on both a stable bench and an exercise ball, each separated by at least 7 days. Surface EMG was recorded for 5 upper body muscles and one trunk muscle from which average root mean square of the muscle activity was calculated for the whole 1RM lift and the concentric and eccentric phases. Elbow angle during each lift was recorded to examine any range-of-motion differences between the two surfaces. The results show that there was no difference in 1RM strength or muscle EMG activity for the stable and unstable surfaces. In addition, there was no difference in elbow range-of-motion between the two surfaces. Taken together, these results indicate that there is no reduction in 1RM strength or any differences in muscle EMG activity for the barbell chest press exercise on an unstable exercise ball when compared to a stable flat surface. Moreover, these results do not support the notion that resistance exercises performed on an exercise ball are more efficacious than traditional stable exercises.  相似文献   

19.

Background

Surface instability is a common addition to traditional rehabilitation and strength exercises with the aim of increasing muscle activity, increasing exercise difficulty and improving joint proprioception. The aim of the current study was to determine if performing upper body closed kinetic chain exercises on a labile surface (Swiss ball) influences myoelectric amplitude when compared with a stable surface.

Methods

Thirteen males were recruited from a convenience sample of college students. Surface electromyograms were recorded from the triceps, pectoralis major, latissimus dorsi, rectus abdominis and external oblique while performing push up exercises with the feet or hands placed on a bench and separately on a Swiss ball. A push up plus exercise was also evaluated with hands on the support surface.

Results and discussion

Not all muscles responded with an increase in muscle activity. The pectoralis major muscle was not influenced by surface stability. The triceps and rectus abdominis muscles showed increases in muscle activity only when the hands were on the unstable surface. The external oblique muscle was only influenced by surface stability during the performance of the push up plus exercise. No muscle showed a change in activation level when the legs were supported by the Swiss ball instead of the bench.

Conclusion

Muscle activity can be influenced by the addition of surface instability however an increase in muscle activity does not influence all muscles in all conditions. The relationship between the participant's center of mass, the location of the unstable surface and the body part contacting the Swiss ball may be important factors in determining the muscle activation changes following changes in surface stability.
  相似文献   

20.
Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32–135% MVC); upper trapezius and middle deltoid while exerting upwards (73–103% and 42–78% MVC, respectively); infraspinatus while pushing (38–79% MVC); and pectoralis major activation was the highest during downwards exertions (48–84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号