首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Estrogen receptor alpha (ERα) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ERα mouse line that can be used to knock out ERα in selected tissues by using the Cre/LoxP system. In this study, we established a new ERα knockout mouse line by crossing the floxed ERα mice with Cre deleter mice. Here we show that genetic disruption of the ERα gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ERα is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.  相似文献   

2.
The synthesis and in vivo evaluation of (11)C -labeled uric acid ([(11)C]1), a potential imaging agent for the diagnosis of urate-related life-style diseases, was performed using positron emission tomography (PET) image analysis. First, the synthesis of [(11)C]1 was achieved by reacting 5,6-diaminouracil (2) with (11)C-labeled phosgene ([(11)C]COCl(2)). The radiochemical yield of [(11)C]1 was 37±7% (decay-corrected based on [(11)C]COCl(2)) with specific radioactivities of 96-152GBq/μmol at the end of synthesis (n=6). The average time of radiosynthesis from the end of bombardment, including formulation, was about 30min with >98% radiochemical purity. Second, the synthetic approach to [(11)C]1 was optimized using 5,6-diaminouracil sulfate (3) with [(11)C]COCl(2) in the presence of 1,8-bis(dimethylamino)naphthalene. [(11)C]1 was synthesized in 36±6% radiochemical yield, 89-142GBq/μmol of specific radioactivities, and 98% radiochemical purity by this method (n=5). This allowed the synthesis of [(11)C]1 to be carried out repeatedly and the radiochemical yield, specific radioactivities, average time of synthesis, and radiochemical purity of [(11)C]1 were similar to those obtained using 2. PET studies in rats showed large differences in the accumulation of radioligand in the limbs under normal and hyperuricemic conditions. Thus, an efficient and convenient automated synthesis of [(11)C]1 has been developed, and preliminary PET evaluation of [(11)C]1 confirmed the increased accumulation of radioactivity in the limbs of a rat model of hyperuricemia.  相似文献   

3.
Wang M  Gao M  Miller KD  Zheng QH 《Steroids》2011,76(12):1331-1340
The translocator protein 18 kDa (TSPO) is an attractive target for molecular imaging of neuroinflammation and tumor progression. [18F]PBR06, a fluorine-18 labeled form of PBR06, is a promising PET TSPO radioligand originally developed at NIMH. [11C]PBR06, a carbon-11 labeled form of PBR06, was designed and synthesized for the first time. The standard PBR06 was synthesized from 2,5-dimethoxybenzaldehyde in three steps with 71% overall chemical yield. The radiolabeling precursor desmethyl-PBR06 was synthesized from 2-hydroxy-5-methoxybenzaldehyde in five steps with 12% overall chemical yield. The target tracer [11C]PBR06 was prepared by O-[11C]methylation of desmethyl-PBR06 with [11C]CH3OTf in CH3CN at 80 °C under basic condition and isolated by HPLC combined with SPE purification with 40–60% decay corrected radiochemical yield and 222–740 GBq/μmol specific activity at EOB. On the similar grounds, [18F]PBR06 was also designed and synthesized. The previously described Br-PBR06 precursor was synthesized from 2,5-dimethoxybenzaldehyde in two steps with 78% overall chemical yield. A new radiolabeling precursor tosyloxy-PBR06, previously undescribed tosylate congener of PBR06, was designed and synthesized from ethyl 2-hydroxyacetate, 4-methylbenzene-1-sulfonyl chloride, and N-(2,5-dimethoxybenzyl)-2-phenoxyaniline in four steps with 50% overall chemical yield. [18F]PBR06 was prepared by the nucleophilic substitution of either new tosyloxy-PBR06 precursor or known Br-PBR06 precursor in DMSO at 140 °C with K[18F]F/Kryptofix 2.2.2 for 15 min and HPLC combined with SPE purification in 20–60% decay corrected radiochemical yield, >99% radiochemical purity, 87–95% chemical purity, and 37–222 GBq/μmol specific activity at EOB. Radiosynthesis of [18F]PBR06 using new tosylated precursor gave similar radiochemical purity, and higher specific activity, radiochemical yield and chemical purity in comparison with radiosynthesis using bromine precursor.  相似文献   

4.
The relevance of estrogen functions in lipid metabolism has been suggested in patients with estrogen-signaling deficiencies. Their importance was further implied by studies in estrogen-deficient mice (ArKO mice), which progressively developed hepatic steatosis. As circulating tumor necrosis factor (TNF)-α levels are known to positively correlate with disturbances in lipid metabolism, we investigated the impact of the loss of TNF-α signaling on carbohydrate and lipid metabolism in ArKO mice. Histological examinations of the livers of mice at 5 months of age revealed that ArKO male mice lacking the TNF-α receptor type 1 (TNFR1) gene (ArKO/TNFR1KO) or both the TNFR 1 and 2 genes (ArKO/TNFR1&2KO) developed more severe hepatic steatosis than ArKO or ArKO/TNFR2KO mice. Serum analyses demonstrated a clear increase in cholesterol and insulin levels in the ArKO/TNFR1KO mice compared with the ArKO mice. Glucose- and insulin-tolerance tests further revealed exacerbation of the systemic insulin resistant phenotype in the ArKO/TNFR1KO mice. Hepatic expression of lipogenic genes including fatty-acid synthase and stearoyl-Coenzyme A desaturase 1 were more markedly upregulated in the ArKO/TNFR1KO mice than the ArKO mice. These findings indicate that under estrogen-deficient physiological conditions, hepatic lipid metabolism would benefit from TNF-α mediated signaling via TNFR1.  相似文献   

5.
2-(2',6'-Dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine has been identified as a potent ligand for the serotonin 7 (5-HT(7)) receptor. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]2-(2',6'-dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine ([(11)C]Cimbi-806) as a radioligand for imaging brain 5-HT(7) receptors with positron emission tomography (PET). Precursor and reference compound was synthesized and subsequent (11)C-labelling with [(11)C]methyltriflate produced [(11)C]Cimbi-806 in specific activities ranging from 50 to 300 GBq/μmol. Following intravenous injection, brain uptake and distribution of [(11)C]Cimbi-806 was assessed with PET in Danish Landrace pigs. The time-activity curves revealed high brain uptake in thalamic and striatal regions (SUV ~2.5) and kinetic modeling resulted in distribution volumes (V(T)) ranging from 6 mL/cm(3) in the cerebellum to 12 mL/cm(3) in the thalamus. Pretreatment with the 5-HT(7) receptor antagonist SB-269970 did not result in any significant changes in [(11)C]Cimbi-806 binding in any of the analyzed regions. Despite the high brain uptake and relevant distribution pattern, the absence of appropriate in vivo blocking with a 5-HT(7) receptor selective compounds renders the conclusion that [(11)C]Cimbi-806 is not an appropriate PET radioligand for imaging the 5-HT(7) receptor in vivo.  相似文献   

6.
Diabetes is characterized by an absolute or relative deficiency of pancreatic β-cells. New strategies to accelerate β-cell neogenesis or maintain existing β-cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits β-cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against β-cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (β-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not β-FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased β-cell mass due to increased islet number rather than islet size, indicating accelerated β-cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not β-FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or β-FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits β-cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.  相似文献   

7.
Gene expression profiling had revealed that TGF-β superfamily type I receptor (also known as activin receptor-like kinase-1, ALK1) and TGFβR2 (TGF-β type II receptor) were down-regulated in nasopharyngeal carcinoma (NPC) (P < 0.05, respectively). However, no study with significantly large clinical samples to address the relevance of ALK1 and TGFβR2 in NPC progression or in patient outcomes has been reported. This study aims to assess the possible correlations of ALK1 and TGFβR2 expression with NPC progression and their potential prognostic predictive ability in NPC outcomes. ALK1 and TGFβR2 mRNA and protein levels were detected by qRT-PCR and NPC tissue microarray (TMA), which included 742 tissue cores. Both mRNA and protein levels of ALK1 and TGFβR2 were significantly lower in the cancer tissues compared with the non-cancerous tissues (P < 0.05). Epstein-Barr virus small RNA (EBER-1) hybridization signals in NPC showed significant associations with ALK1 and TGFβR2 proteins (P = 0.000 and 0.003, respectively). In the final logistic regression analysis model, the abnormal expression of ALK1 and TGFβR2 were found to be independent contributors to nasopharyngeal carcinogenesis (P = 0.000 and 0.000, respectively). A survival analysis revealed that ALK1 (Disease Free Survival (DFS): P = 0.002, Overall Survival (OS): P = 0.007) and TGFβR2 (DFS: P = 0.072, OS: P = 0.045) could predict the prognosis of NPC patients. The positive expression of ALK1 and TGFβR2 were independent risk factors for DFS and OS in multivariate analyses (DFS: P = 0.001 and 0.420, respectively; OS: P = 0.018 and 0.047, respectively). These results suggest that ALK1 and TGFβR2 may be useful prognostic biomarkers in NPC.  相似文献   

8.
N-(4-fluorobut-2-yn-1-yl)-2β-carbomethoxy-3β-(4'-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [(11)C]PR04.MZ ([(11)C]-1) has been developed using GMP compliant equipment. An adult female Papio anubis baboon was studied using a test-retest protocol with [(11)C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (f(P)), plasma input functions and metabolic degradation of the radiotracer [(11)C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (V(T)) and non-displaceable binding potentials (BP(ND)) for various brain regions and the blood were obtained from kinetic modelling. [(11)C]-1 shows promising results as a selective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.  相似文献   

9.
The current paper describes a validated method for the detection and quantification of naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018), an ingredient of a herbal mixture called “Spice”, by means of HPLC–ESI–MS–MS in serum. Lower limit of detection and lower limit of quantification were 0.07 and 0.21 ng/ml, respectively. In 2 subjects who consumed ca. 50 μg/kg of JWH-018 by smoking, the active ingredient was detected by means of the described method. Thereby, the serum concentrations reached values of approx. 10 ng/ml and dropped within 3 h very fast (<10% of the measured maximum concentrations).  相似文献   

10.
Increasing evidence suggests that disruption of neuron activity contributes to the autistic phenotype. Thus, we aimed in this study to explore the role of protein kinase C beta (PKCβ) in the regulation of neuron activity in an autism model. The expression of PKCβ in the microarray data of autism animal models was obtained from the Gene Expression Omnibus database. Then, mice with autism-like behavior were prepared in EN2 knockout (−/−) mice. The interaction between PKCβ on fat mass and obesity-associated protein (FTO) as well as between PGC-1α and uncoupling protein 1 (UCP1) were characterized. The effect of FTO on the N6-methyladenosine (m6A) modification level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was assayed. Following transfection of overexpressed PKCβ and/or silenced UCP1, effects of PKCβ and UCP1 in autism-like behaviors in EN2−/− mice were analyzed. Results showed that PKCβ was downregulated in EN2−/− mouse brain tissues or neurons. PKCβ promoted the expression and stability of FTO, which downregulated the m6A modification level of PGC-1α to promote its expression. Moreover, PGC-1α positively targeted the expression of UCP1. PKCβ knockdown enhanced sociability and spatial exploration ability, and reduced neuron apoptosis in EN2−/− mouse models of autism, which was reversed by UCP1 overexpression. Collectively, PKCβ overexpression leads to activation of the FTO/m6A/PGC-1α/UCP1 axis, thus inhibiting neuron apoptosis and providing neuroprotection in mice with autism-like behavior.  相似文献   

11.
We have previously shown that the human somatostatin receptor type 1 (hSSTR1) does not undergo agonist-induced internalization, but is instead up-regulated at the membrane upon prolonged somatostatin (SST) exposure. The deletion of the carboxyterminal C-tail of the receptor completely abolishes up-regulation. To identify molecular signals that mediate hSSTR1 up-regulation, we created mutant receptors with progressive C-tail deletions. Up-regulation was found to be absent in mutants lacking residues Lys359-Ser360-Arg361. Moreover, point mutation of Ser360 to Ala completely abolished up-regulation. The coexpression of wild type hSSTR1 with V53D, a dominant negative mutant of β-arrestin-1, completely blocked hSSTR1 up-regulation. Further analysis demonstrated that calcium-calmodulin (CaM) dependent kinases were essential for the SST-induced up-regulation response. Like wild type receptors, all mutants failed to internalize after agonist exposure and were able to inhibit forskolin-stimulated cAMP accumulation. Taking these data together, we suggest that SST-induced hSSTR1 up-regulation is critically dependent upon a specific Lys-Ser-Arg sequence in the C-tail of the receptor, with Ser360 being essential. Up-regulation also requires the participation of CaM protein kinases and interactions with β-arrestins. In contrast, coupling to adenyl cyclase (AC) and internalization occur independently of molecular signals in the receptor's C-tail.  相似文献   

12.
Journal of Physiology and Biochemistry - The taste receptor type I (Tas1R) family consists of three G protein-coupled receptors (T1R1, T1R2, and T1R3) that form heterodimers recognizing sweet...  相似文献   

13.
Expression of a glutamate transporter (EAAC1), a lipocalin (MEP17) and -galactosidase (-Gal) in histological sections was used to monitor post-natal development of the murine epididymis. Three epithelia in the adult caput of wild-type mice were distinguished: I, the initial segment; II, the proximal caput; and III, the distal caput. The regions in which epithelia I, II and III were situated were called regions I, II and III, respectively. Regions I, II and III developed from a precursor epithelium present on day 14; from day 16, a presumptive region I epithelium was evident and, by day 21, epithelia characteristic of future regions II and III appeared. The relationship between the c-ros gene and the initial segment was studied by investigating the development of the caput epididymidis in transgenic homozygous c-ros knockout (–/–) mice that lack the initial segment, heterozygous (+/–) males and wild-type males in which the efferent ducts had been ligated prepubertally so that the initial segment failed to develop. In mice with prepubertally ligated efferent ducts, regions II and III developed normally but region I was missing in the adult and expression of c-ros was partially decreased. In (–/–) mice, the precursor epithelium was present, differentiation of epithelium II was delayed until day 32 and epithelium I never developed. Thus, caput region I develops before c-ros expression, high testosterone secretion and differentiation of regions II and III but not if the organ is deprived of the oncogene c-ros or testicular exocrine secretions. The caput of the knockout male lacks solely the initial segment so that the efferent ducts are in continuity with the post-initial segment, proximal caput region. The ligand for c-ros may be present in testicular fluid and both ligand and receptor may be necessary for differentiation of epithelia I and II.This work was funded by the Deutsche Forschungsgemeinschaft (the male gamete: production, maturation, function, FOR 197/3-1)  相似文献   

14.
The binding site locations and structural components for type I and type II positive allosteric modulators (PAMs) of the α7 nicotinic acetylcholine receptor (nAChR) have not been fully characterized yet. In this regard, homology models of the human α7 nAChR and hα7/m5-HT3A chimera, built using the crystal structure of the serotonin type 3A receptor (5-ΗΤR), were used for molecular docking and molecular dynamics simulations to study the molecular interactions of selected type I (5-hydroxyindol, NS-1738, and LY-2087101) and type II (PNU-120596, PAM-2, and TBS-516) PAMs. The docking results indicate: (1) a site located in the extracellular domain (ECD) for type I PAMs such as NS-1738 and LY-2087101, but not for 5-HI; (2) an overlapping site in the ECD–transmembrane domain (TMD) junction for all studied PAMs. Additional docking results on the hα7/m5-HT3A chimera supported experimental results indicating that the ECD site might be relevant for type I PAM activity; and (3) two TMD sites, an intrasubunit site that recognizes type II PAMs, and an intersubunit pocket with high specificity for 5-HI (type I PAM). The in silico α7TSLMF mutant results support the view that M1–Ser223 and M3–Ile281 are key residues for the interaction of PAM-2 and PNU-120596 with the intrasubunit cavity. Our in silico results are in agreement with experimental data showing that the intrasubunit cavity is relevant for the activity of type II PAMs, and suggest that the ECD–TMD junction and intersubunit sites could be significant for the activity of type I PAMs.  相似文献   

15.
The beneficial effects of telmisartan on Angiotensin (Ang)-II mediated oxidative stress and renal fibrosis in streptozotocin (STZ)-induced diabetic nephropathy (DN) were studied. Thirty mice were divided into normal (NG), STZ-induced diabetic (DG) and telmisartan-treated diabetic (TG) groups. Compared with NG mice, DG mice showed significant up-regulations of AT-1R, TGF-β1, p-p38MAPK, p-MAPKAPK-2, p-Akt, p47phox, p67phox, gp91phox protein and collagen-III and all of these were significantly reversed in TG mice. The down-regulated protein expression of Ang-(1-7) mas receptor, ACE-2, PPAR-γ and PGC-1α were observed in DG mice and a significant up-regulation effect of telmisartan has been seen in the TG mice. Furthermore, TG mice showed reduced expression of fibronectin, production of superoxide radical as well as renal hypertrophy and fibrosis when compared with DG mice. These findings suggest that Ang-II plays a significant role in DN and telmisartan would be beneficial in reducing oxidative stress and fibrosis in STZ-induced DN.  相似文献   

16.
The sequence encoding the N-propeptide of collagen I is characterized by significant conservation of amino acids across species; however, the function of the N-propeptide remains poorly defined. Studies in vitro have suggested that one activity of this propeptide might be to act as a feedback inhibitor of collagen I synthesis. To determine whether the N-propeptide contributed to decreased collagen content in SPARC-null mice, mice carrying a deletion of exon 2, which encodes the globular domain of the N-propeptide of collagen I, were crossed to SPARC-null animals. Mice lacking SPARC and expressing collagen I without the globular domain of the N-propeptide were viable and fertile. However, a significant number of animals developed abdominal hernias within the first 2 months of life with an approximate 20% penetrance (~ 35% of males). The dermis of SPARC-null/exon 2-deleted mice was thinner and contained fewer large collagen fibers in comparison with wild-type or in either single transgenic animal. The average collagen fibril diameter of exon 2-deleted mice did not significantly differ from wild-type mice (WT: 87.9 nm versus exon 2-deleted: 88.2 nm), whereas SPARC-null/exon 2-deleted fibrils were smaller than that of SPARC-null dermis (SPARC-null: 60.2 nm, SPARC-null/exon 2-deleted: 40.8 nm). As measured by hydroxyproline analysis, double transgenic skin biopsies contained significantly less collagen than those of wild-type, those of exon 2-deleted, and those of SPARC-null biopsies. Acetic acid extraction of collagen from skin biopsies revealed an increase in the proportion of soluble collagen in the SPARC-null/exon 2-deleted mice. These results support a function of the N-propeptide of collagen I in facilitating incorporation and stabilization of collagen I into the insoluble ECM and argue against a primary function of the N-propeptide as a negative regulator of collagen synthesis.  相似文献   

17.
The sulfonylurea receptor (SUR1) of the pancreatic beta-cell ATP-sensitive potassium channel plays a key role in glucose-induced insulin secretion. The A-allele of a single nucleotide polymorphism (SNP) in exon 31 of the SUR1 gene (AGG-->AGA; Arg1273Arg) has previously been shown to be associated with hyperinsulinemia in nondiabetic Mexican-American subjects. Here, we have investigated the association of this SNP with type 2 diabetes mellitus (T2DM) in French Caucasian subjects. We have observed an increased frequency of the A allele (37.1% vs 27.6%, P=0.0048; odds ratio 1.54), of the AA genotype (15.7% vs 9.8%; P=0.025), and of the combined AA/AG genotypes (58.5% vs 45.5%, P=0.0098; odds ratio 1.69) in patients compared with controls. This association is stronger in the subgroup of patients with age of diagnosis of diabetes equal to or less than 45 years: A allele 43.2% (P=0.0003 compared with controls; odds ratio 1.99), AA genotype 21.4% (P=0.0032), and combined AA/AG genotypes 65.1% (P=0.0022; odds ratio 2.23). Unexpectedly, the G allele is strongly associated with arterial hypertension in obese diabetic subjects (GG vs AA odds ratio 19.97). In conclusion, we have observed an association of an SNP in exon 31 of the SUR1 gene with T2DM. These data reinforce the hypothesis that insulin secretion defects in T2DM might be at least partially related to allelic variations in the SUR1 gene.  相似文献   

18.
The urokinase-type plasminogen activator (uPA) in concert with other proteolytic enzymes plays a critical role in cartilage degradation during osteoarthritis. Urokinase receptor (uPAR), a glycosyl-phosphatidylinositol-linked glycoprotein present on the cell surface of various cell types such as cancer cells, fibroblasts, synoviocytes, and chondrocytes, is a key regulator of the plasmin-mediated pericellular proteolysis. Recently, in arthritic synovial tissue increased uPAR expression has been detected. By immunohistochemical analysis we observed, in addition, enhanced expression of uPAR in chondrocytes of arthritic samples of human cartilage compared to non-arthritic controls. Using in vitro cultured human chondrocytes, we analyzed whether uPAR is associated with structural proteins, which are known to be involved in cell signaling and activation. uPAR in phorbol-12-myristate-13-acetate-stimulated chondrocytes colocalized with caveolin as well as beta 1-integrin, as demonstrated by double immunostaining with specific antibodies. Furthermore, uPAR was present in caveolae-like structures of chondrocytes as detected by immunoelectron microscopy. Finally, both caveolin and beta 1-integrin were coprecipitated with uPAR-specific antibodies from cell extracts suggesting that these proteins may form functional complexes in human chondrocytes. The localization of uPAR in caveolae and its close association with caveolin and beta 1-integrin points to a significance of uPAR-mediated signaling pathways in human chondrocytes.  相似文献   

19.
Matrix metalloproteinases (MMPs) cleave and degrade most components of the extracellular matrix, and unregulated MMP activity has been correlated to cancer and metastasis. Hence there is a burgeoning need to develop inhibitors that bind selectively to structurally similar MMPs. The inhibition profiles of peptidomimetics containing C(α) substituents at the α,β unsaturated carbon were evaluated against the recombinant forms of ADAM17, MMP1, and MMP9. The dicarboxylic acid D2 and hydroxamate C2 inhibited MMP9 but not MMP1. The unsaturated compound E2 displayed selective inhibition for MMP1, compared with the saturated precursor C2, with an IC(50) value of 3.91 μm. The molecular basis for this selectivity was further investigated by the molecular docking of E2 and D2 into the active sites of MMP1 and MMP9. These data demonstrate hydrogen-bonding interactions between the carbonyl group of the C(α) substituent of E2 and the side chain of Asn180 present in the active site of MMP1. Conversely, the docked MMP9-D2 structure shows hydrophobic and hydrogen bonding between the ligand's morpholine substituent and second carboxylic acid group with Leu187 and an amide, respectively. This study suggests that substituents other than P(1)' and P(2)' may confer selectivity among MMPs and may aid in the search for novel lead compounds.  相似文献   

20.
Adipose tissue, an endocrine organ, secretes bioactive factors including adiponectin. Adiponectin is a protein hormone that enhances insulin sensitivity through increased fatty acid oxidation and inhibition of hepatic glucose production. We assessed the association of the adiponectin promoter region polymorphisms −11391 G/A and −11377 C/G with susceptibility to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus in the population of west Iran. Also, we investigated the effect of adiponectin level and lipid profile on T1DM and T2DM development. In this case-control study, we recruited 189 patients with diabetes (100 T2DM and 89 T1DM) and 161 sex and age-matched unrelated healthy controls. Adiponectin mutations were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and the protein level was measured by the enzyme-linked immunosorbent assay. Other biochemical parameters were determined by routine laboratory methods. The G allele of adiponectin gene at −11377 position (C/G) significantly increased the risk of T1DM. With respect to genotype models, codominant (2.97 times), dominant (3.6-fold), and over-codominant (2.9-fold) patients with T1DM who carried −11377 C > G single-nucleotide polymorphisms were significantly susceptible to the development of the disease. A significantly higher level of adiponectin in T1DM was oberved compared with the control group. In contrast, patients with T2DM had lower adiponectin levels compared with healthy controls. The genotype distributions of −11391 G/A polymorphisms were the same for patients with diabetes and control groups. The presence of G allele at −11377 C/G adiponectin gene significantly increased serum adiponectin level and may be a risk factor for T1DM susceptibility among the western Iranian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号