首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

2.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

3.
The biosorption characteristics of Pb(II) and Cr(III) ions from aqueous solution using the lichen (Parmelina tiliaceae) biomass were investigated. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by P. tiliaceae biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of P. tiliaceae biomass for Pb(II) and Cr(III) ions was found to be 75.8 mg/g and 52.1mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/mol for Cr(III) biosorption, indicating that the biosorption of both metal ions was taken place by chemical ion-exchange. The calculated thermodynamic parameters (delta G degrees , delta H degrees and delta S degrees ) showed that the biosorption of Pb(II) and Cr(III) ions onto P. tiliaceae biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

4.
The study focuses on the equilibrium of dynamic biosorption in single and binary systems containing Cu(II) and Ni(II) ions using Sargassum filipendula (a marine alga). The experiments were performed in fixed-bed columns with both single-component and bi-component metal solutions (using different molar concentrations). Experimental data were fitted with different equilibrium models such as Langmuir, Langmuir with inhibition, Jain and Snowyink and Langmuir-Freundlich equations. The biosorption of pure metal ions in solution presented adequate capacities both for Cu(II) and Ni(II). In binary solutions the preferential sorption of Cu(II) over Ni(II) was demonstrated by the displacement of Ni(II) (marked overshoot on the breakthrough curves).  相似文献   

5.
Aside from its excellent mechanical properties, spider silk (SS) would offer an active surface for heavy metal interaction due to its rich protein structure. The present study describes the potential use of natural (SS) as a sorbent of heavy metals from aqueous solutions. Single and multi-species biosorption experiments of heavy metals by natural SS were conducted using batch and column experiments. The biosorption kinetics, in general, was found to follow the second-order rate expression, and the experimental equilibrium biosorption data fitted reasonably well to Freundlich isotherm. From the Freundlich isotherm, the biosorption capacities of Cu(II) and Pb(II) ions onto SS were found as 0.20 and 0.007 mmol g?1, respectively. The results showed a decrease in the extent of metal ion uptake with lowering the pH.  相似文献   

6.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

7.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

8.
9.
Danel F  Paetzel M  Strynadka NC  Page MG 《Biochemistry》2001,40(31):9412-9420
The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.  相似文献   

10.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

11.
A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules   总被引:12,自引:0,他引:12  
Aerobic granules are microbial aggregates with a strong and compact structure. This study looked into the feasibility of aerobic granules as a novel type of biosorbent for the removal of individual Cd(2+), Cu(2+) and Zn(2+) from aqueous solution. Based on the thermodynamics of biosorption reaction, a general model was developed to describe the equilibrium biosorption of individual Cd(2+), Cu(2+) and Zn(2+) by aerobic granules. This model provides good insights into the thermodynamic mechanisms of biosorption of heavy metals. The model prediction was in good agreement with the experimental data obtained. It was further demonstrated that the Langmuir, Freundlich and Sips or Hill equations were particular cases of the proposed model. The biosorption capacity of individual Cd(2+), Cu(2+) and Zn(2+) on aerobic granules was 172.7, 59.6 and 164.5 mgg(-1), respectively. These values may imply that aerobic granules are effective biosorbent for the removal of Cd(2+), Cu(2+) and Zn(2+) from industrial wastewater.  相似文献   

12.
The aim of this study was to investigate the biosorption characteristics of Cd(2+), Cu(2+), and Pb(2+) by the fruiting body of jelly fungus Auricularia polytricha. Batch experiments were conducted to characterize the kinetics, equilibrium, and mechanisms of the biosorption process. Optimum values of pH?5, biomass dosage 4?g?L(-1), and contact time 60?min provided maximum biosorption capacities of A. polytricha for Cd(2+), Cu(2+), and Pb(2+) of 63.3, 73.7, and 221?mg?g(-1), respectively. The maximum desorption was achieved using 0.05?mol?L(-1) HNO(3) as an elute. The fruiting body was reusable at least for six cycles of operations. The pseudo-second-order model was the best to describe the biosorption processes among the three kinetic models tested. Freundlich and Dubinin-Radushkevich models fitted the equilibrium data well, indicating a heterogeneous biosorbent surface and the favorable chemisorption nature of the biosorption process. A Fourier transform infrared spectroscopy analysis indicated that carboxyl, amine/hydroxyl, amino, phosphoryl, and C-N-C were the main functional groups to affect the biosorption process. Synergistic ion exchange and surface complexation were the dominant mechanisms in the biosorption process. The present work revealed the potential of jelly fungus (fruiting body of A. polytricha) to remove toxic heavy metals from contaminated water.  相似文献   

13.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

14.
The removal of Cu(II) from aqueous solutions by Ulothrix zonata   总被引:3,自引:0,他引:3  
In this work, adsorption of copper(II) ions on alga has been studied by using batch adsorption techniques. The equilibrium biosorption level was determined as a function of contact time at several initial metal ion concentrations. The effect of adsorbent concentration on the amount adsorbed was also investigated. The experimental adsorption data were fitted to the Langmuir adsorption model. The free energy change (deltaG0) for the adsorption process was found to be -12.60 kJ/mol. The results indicated that the biomass of Ulothrix zonata is a suitable biosorbent for both the removal and recovery of heavy metals from wastewater.  相似文献   

15.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

16.
In situ immobilization constitutes a promising technology for the mitigation of contaminants, through the reduction of metal bioavailability and mobility. This study investigated the adsorption isotherms and kinetic characteristics of humin extracted from peat soils. We also studied the influences of the pH, ionic strengths, and soluble organic matter concentrations of soil solutions on the adsorptive properties of humin, and compared its ability to detoxify potentially toxic metals in both actual and simulated soil solutions. The study results indicated that humin contains a massive population of oxygen-containing functional groups. Its adsorption capacity for Pb(II) was greater than that for Cu(II), which exceeded that for Cd(II). The adsorption of humin for Pb(II) conformed to the Freundlich model, while the adsorption of humin for Cd(II) and Cu(II) followed the Langmuir model. The adsorption kinetics of humin with respect to potentially toxic metals aligned well with second-order kinetics equations. As the pH was elevated, the potentially toxic metal adsorption by humin increased rapidly. Electrolyte ions and tartaric acids in solution both inhibited the adsorption of potentially toxic metals by humin, and its ability to inactivate potentially toxic metals. This was shown to be improved in actual field soil solutions in contrast to simulated soil solutions.  相似文献   

17.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

18.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

19.
Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.  相似文献   

20.
Biosorption of Cd(II) and Cr(VI) ions in single solutions using Staphylococcus xylosus and Pseudomonas sp., and their selectivity in binary mixtures was investigated. Langmuir and Freundlich models were applied to describe metal biosorption and the influence of pH, biomass concentration and contact time was determined. Maximum uptake capacity of cadmium was estimated to 250 and 278 mg g(-1), whereas that of chromium to 143 and 95 mg g(-1) for S. xylosus and Pseudomonas sp., respectively. In binary mixtures with Cd(II) ions as the dominant species, there is a profound selectivity for cadmium biosorption, reaching 96% and 89% for Pseudomonas sp. and S. xylosus, respectively, at 10 mg l(-1) Cd(II) and 5 mg l(-1) Cr(VI). Interesting, when chromium (VI) ions are the dominant species, there is selectivity towards chromium around 92% with S. xylosus only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号