共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Distance-Independence of Mitotic Intrachromosomal Recombination in Saccharomyces Cerevisiae 总被引:5,自引:5,他引:5 下载免费PDF全文
Many genetic studies have shown that the frequency of homologous recombination depends largely on the distance in which recombination can occur. We have studied the effect of varying the length of duplicated sequences on the frequency of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. We find that the frequency of recombination resulting in the loss of one of the repeats and the intervening sequences reaches a plateau when the repeats are short. In addition, the frequency of recombination to correct a point mutation contained in one of these repeats is not proportional to the size of the duplication but rather depends dramatically on the location of the mutation within the repeated sequences. However, the frequency of mitotic interchromosomal reciprocal recombination is dependent on the distance separating the markers. The difference in the response of intrachromosomal and interchromosomal mitotic recombination to increasing lengths of homology may indicate there are different rate-limiting steps for recombination in these two cases. These findings have important implications for the maintenance and evolution of duplicated sequences. 相似文献
3.
4.
Mitotic Recombination among Subtelomeric Y'' Repeats in Saccharomyces Cerevisiae 总被引:15,自引:8,他引:7 下载免费PDF全文
Y's are a dispersed family of repeats that vary in copy number, location and restriction fragment lengths between strains but exhibit within-strain homogeneity. We have studied mitotic recombination between members of the subtelomeric Y' repeated sequence family of Saccharomyces cerevisiae. Individual copies of Y's were marked with SUP11 and URA3 which allowed for the selection of duplications and losses of the marked Y's. Duplications occurred by ectopic recombinational interactions between Y's at different chromosome ends as well as by unequal sister chromatid exchange. Several of the ectopic duplications resulted in an originally Y'-less chromosome end acquiring a marked Y'. Among losses, most resulted from ectopic exchange or conversion in which only the marker sequence was lost. In some losses, the chromosome end became Y'-less. Although the two subsets of Y's, Y'-longs (6.7 kb) and Y'-shorts (5.2 kb), share extensive sequence homology, a marked Y' recombines highly preferentially within its own subset. These mitotic interactions can in part explain the maintenance of Y's and their subsets, the homogeneity among Y's within a strain, as well as diversity between strains. 相似文献
5.
6.
Position Effects in Ectopic and Allelic Mitotic Recombination in Saccharomyces Cerevisiae 总被引:12,自引:5,他引:12 下载免费PDF全文
We have examined the role that genomic location plays in mitotic intragenic recombination. Mutant alleles of the LEU2 gene were inserted at five locations in the yeast genome. Diploid and haploid strains containing various combinations of these inserts were used to examine both allelic recombination (between sequences at the same position on parental homologs) and ectopic recombination (between sequences at nonallelic locations). Chromosomal location had little effect on mitotic allelic recombination. The rate of recombination to LEU2 at five different loci varied less than threefold. This finding contrasts with previous observations of strong position effects in meiosis; frequencies of meiotic recombination at the same five loci differ by about a factor of forty. Mitotic recombination between dispersed copies of leu2 displayed strong position effects. Copies of leu2 located approximately 20 kb apart on the same chromosome recombined at rates 6-13-fold higher than those observed for allelic copies of leu2. leu2 sequences located on nonhomologous chromosomes or at distant loci on the same chromosome recombined at rates similar to those observed for allelic copies. We suggest that, during mitosis, parental homologs interact with each other no more frequently than do nonhomologous chromosomes. 相似文献
7.
Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation 总被引:2,自引:0,他引:2 下载免费PDF全文
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. 相似文献
8.
9.
Mitomycin C has been found to stimulate the production of long-tailed defective bacteriophages and poly tails in thick cell wall mycobacterial mutants. 相似文献
10.
Interaction between Ustilago Maydis Rec2 and Rad51 Genes in DNA Repair and Mitotic Recombination 下载免费PDF全文
D. O. Ferguson M. C. Rice M. H. Rendi H. Kotani E. B. Kmiec W. K. Holloman 《Genetics》1997,145(2):243-251
A gene encoding a Ustilago maydis Rad51 orthologue has been isolated. rad51-1, a mutant constructed by disrupting the gene, was as sensitive to killing by ultraviolet light and γ radiation as the rec2-1 mutant and slightly more sensitive to killing by methyl methanesulfonate. There was no suppression of killing by ultraviolet light when a rec2-1 strain was transformed with a multicopy plasmid containing RAD51, nor was there suppression when rad51-1 was transformed with a multicopy plasmid containing REC2. Recombination proficiency as measured by a gap repair assay was diminished in both rec2-1 and rad51-1 strains. In rec2-1 the frequency of recombination was decreased, but the spectrum of events was similar to that observed in wild type, while in rad51-1 the frequency as well as the spectrum of recombination events were different. Studies with the rec2-1 rad51-1 double mutant indicated that there was epistasis in the action of REC2 and RAD51 in certain repair and recombination functions, but some measure of independent action in other functions. 相似文献
11.
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers. 相似文献
12.
Deborah Holt Monica Dreimanis Marie Pfeiffer Frank Firgaira Alec Morley David Turner 《American journal of human genetics》1999,65(5):1423-1427
Mitotic recombination (MR) between homologous chromosomes is a mutational event that results in loss of heterozygosity in half of the segregants at mitosis. Loss of heterozygosity may have important biological consequences. The purpose of this study was to describe human variation in the spontaneous frequency of MR. Using an immunoselection technique for isolating the somatic mutations that result in loss of expression of one of the codominant alleles at the HLA-A locus, we have measured the frequency and molecular basis of somatic mutations in lymphocytes from a population of young adults. Mutations were classified as being the result of intragenic changes, major deletions, or MR. Here we show that the MR mutation frequency in females was significantly greater than that in males but that intragenic mutation frequency showed no association with sex. Individual variation in MR frequency ranged over more than two orders of magnitude and was not normally distributed. Furthermore, the observed number of individuals from whom no mutants resulting from MR were obtained was significantly greater than was expected. The endogenous level of MR may be under genetic control. Given the association of loss of heterozygosity with cancer initiation and progression, low endogenous MR may confer a reduced lifetime risk of cancer, and the converse may apply. 相似文献
13.
Milorad Kojic Jeanette H. Sutherland José Pérez-Martín William K. Holloman 《Genetics》2013,195(4):1231-1240
A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar+ recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity. 相似文献
14.
15.
Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.Homologous recombination (HR) is defined as the homology-directed exchange of genetic information between two DNA molecules (Fig. 1). Mitotic recombination is often initiated by single-stranded DNA (ssDNA), which can arise by several avenues (Mehta and Haber 2014). They include the processing of DNA double-strand breaks by 5′ to 3′ resection, during replication of damaged DNA, or during excision repair (Symington 2014). The ssDNA is bound by replication protein A (RPA) to control its accessibility to the Rad51 recombinase (Sung 1994, 1997a; Sugiyama et al. 1997; Morrical 2014). The barrier to Rad51-catalyzed recombination imposed by RPA can be overcome by a number of mediators, such as BRCA2 and Rad52, which serve to replace RPA with Rad51 on ssDNA, and the Rad51 paralogs Rad55-Rad57 (RAD51B-RAD51C-XRCC2-XRCC3) and the Psy3-Csm2-Shu1-Shu2 complex (SHU) (RAD51D-XRCC2-SWS1), which stabilize Rad51 filaments on ssDNA (see Sung 1997b; Sigurdsson et al. 2001; Martin et al. 2006; Bernstein et al. 2011; Liu et al. 2011; Qing et al. 2011; Amunugama et al. 2013; Zelensky et al. 2014). The Rad51 nucleoprotein filament catalyzes the invasion into a homologous duplex to produce a displacement loop (D-loop) (Fig. 1). At this stage, additional antirecombination functions are exerted by Srs2 (FBH1, PARI), which dissociates Rad51 filaments from ssDNA, and Mph1 (FANCM), which disassembles D-loops (see Daley et al. 2014). Upon Rad51-catalyzed strand invasion, the ATP-dependent DNA translocase Rad54 enables the invading 3′ end to be extended by DNA polymerases to copy genetic information from the intact duplex (Li and Heyer 2009). Ligation of the products often leads to joint molecules (JMs), such as single- or double-Holliday junctions (s/dHJs) or hemicatenanes (HCs), which must be processed to allow separation of the sister chromatids during mitosis. JMs can be dissolved by the Sgs1-Top3-Rmi1 complex (STR) (BTR, BLM-TOP3α-RMI1-RMI2) (see Bizard and Hickson 2014) or resolved by structure-selective nucleases, such as Mus81-Mms4 (MUS81-EME1), Slx1-Slx4, and Yen1 (GEN1) (see Wyatt and West 2014). Mitotic cells favor recombination events that lead to noncrossover events likely to avoid potentially detrimental consequences of loss of heterozygosity and translocations.Open in a separate windowFigure 1.Primary pathways for homology-dependent double-strand break (DSB) repair. Recombinational repair of a DSB is initiated by 5′ to 3′ resection of the DNA end(s). The resulting 3′ single-stranded end(s) invade an intact homologous duplex (in red) to prime DNA synthesis. For DSBs that are repaired by the classical double-strand break repair (DSBR) model, the displaced strand from the donor duplex pairs with the 3′ single-stranded DNA (ssDNA) tail at the other side of the break, which primes a second round of DNA synthesis. After ligation of the newly synthesized DNA to the resected 5′ strands, a double-Holliday junction (dHJ) intermediate is generated. The dHJ can be either dissolved by branch migration (indicated by arrows) into a hemicatenane (HC) leading to noncrossover (NCO) products or resolved by endonucleolytic cleavage (indicated by triangles) to produce NCO (positions 1, 2, 3, and 4) or CO (positions 1, 2, 5, and 6) products. Alternatively to the double-strand break repair (DSBR) pathway, the invading strand is often displaced after limited synthesis and the nascent complementary strand anneals with the 3′ single-stranded tail of the other end of the DSB. After fill-in synthesis and ligation, this pathway generates NCO products and is referred to as synthesis-dependent strand annealing (SDSA).
Open in a separate windowThe vast majority of cell biological studies of mitotic recombination in living cells are performed by tagging of proteins with genetically encoded green fluorescent protein (GFP) or similar molecules (Shaner et al. 2005; Silva et al. 2012). In this context, it is important to keep in mind that an estimated 13% of yeast proteins are functionally compromised by GFP tagging (Huh et al. 2003). By choosing fluorophores with specific photochemical properties, it has been possible to infer biochemical properties, such as diffusion rates, protein–protein interactions, protein turnover, and stoichiometry of protein complexes at the single-cell level. To visualize the location of specific loci within the nucleus, sequence-specific DNA-binding proteins such the Lac and Tet repressors have been used with great success. Specifically, tandem arrays of 100–300 copies of repressor binding sites are inserted within 10–20 kb of the locus of interest in cells expressing the GFP-tagged repressor (Straight et al. 1996; Michaelis et al. 1997). In wild-type budding yeast, such protein-bound arrays are overcome by the replication fork without a cell-cycle delay or checkpoint activation (Dubarry et al. 2011). However, the arrays are unstable in rrm3Δ and other mutants (Dubarry et al. 2011). More pronounced DNA replication blockage by artificial protein-bound DNA tandem arrays has be observed in fission yeast, which is accompanied by increased recombination and formation of DNA anaphase bridges (Sofueva et al. 2011). Likewise, an array of Lac repressor binding sites was reported to induce chromosomal fragility in mouse cells (Jacome and Fernandez-Capetillo 2011). However, these repressor-bound arrays generally appear as a focus with a size smaller than the diffraction limit of light, which is in the range 150–300 nm for wide-field light microscopy. 相似文献
Table 1.
Evolutionary conservation of homologous recombination proteins between Saccharomyces cerevisiae and Homo sapiensFunctional class | S. cerevisiae | H. sapiens |
---|---|---|
End resection | Mre11-Rad50-Xrs2 | MRE11-RAD50-NBS1 |
Sae2 | CtIP | |
Exo1 | EXO1 | |
Dna2-Sgs1-Top3-Rmi1 | DNA2-BLM-TOP3α-RMI1-RMI2 | |
Adaptors | Rad9 | 53BP1, MDC1 |
– | BRCA1 | |
Checkpoint signaling | Tel1 | ATM |
Mec1-Ddc2 | ATR-ATRIP | |
Rad53 | CHK2 | |
Rad24-RFC | RAD17-RFC | |
Ddc1-Mec3-Rad17 | RAD9-HUS1-RAD1 | |
Dpb11 | TOPBP1 | |
Single-stranded DNA binding | Rfa1-Rfa2-Rfa3 | RPA1-RPA2-RPA3 |
Single-strand annealing | Rad52 | RAD52 |
Rad59 | – | |
Mediators | – | BRCA2-PALB2 |
Rad52 | – | |
Strand exchange | Rad51 | RAD51 |
Rad54 | RAD54A, RAD54B | |
Rdh54 | – | |
Rad51 paralogs | Rad55-Rad57 | RAD51B-RAD51C-RAD51D-XRCC2-XRCC3 |
Psy3-Csm2-Shu1-Shu2 | RAD51D-XRCC2-SWS1 | |
Antirecombinases | Srs2 | FBH1, PARI |
Mph1 | FANCM | |
– | RTEL | |
Resolvases and nucleases | Mus81-Mms4 | MUS81-EME1 |
Slx1-Slx4 | SLX1-SLX4 | |
Yen1 | GEN1 | |
Rad1-Rad10 | XPF-ERCC1 | |
Dissolution | Sgs1-Top3-Rmi1 | BLM-TOP3α-RMI1-RMI2 |
16.
Mitotic Recombination in Pseudo-Wild Types of Neurospora 总被引:7,自引:6,他引:1
17.
18.
The budding yeast Saccharomyces cerevisiae provides a unique opportunity for study of the microtubule-based motor proteins that participate in mitotic spindle function. The genome of Saccharomyces encodes a relatively small and genetically tractable set of microtubule-based motor proteins. The single cytoplasmic dynein and five of the six kinesin-related proteins encoded have been implicated in mitotic spindle function. Each motor protein is unique in amino acid sequence. On account of functional overlap, no single motor is uniquely required for cell viability, however. The ability to create and analyze multiple mutants has allowed experimental dissection of the roles performed by each mitotic motor. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle (kinesin-related Cin8p, Kip1p, Kip3p and Kar3p). Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell (dynein and kinesin-related Kip2p, Kip3p and Kar3p). The six motors apparently contribute three fundamental activities to spindle function: motility, microtubule cross-linking and regulation of microtubule dynamics. 相似文献
19.
Judith Wildenberg 《Genetics》1970,66(2):291-304
20.
Radiation Effects and Mitotic Recombination in Diploids of Aspergillus Nidulans 总被引:1,自引:0,他引:1 下载免费PDF全文
Etta K?fer 《Genetics》1963,48(1):27-45