首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preincubation of sarcoplasmic reticulum (SR) with propranolol or tetracaine inhibits Ca2+ accumulation and stimulates ATPase activity by more than 2-fold. This effect is obtained only when the preincubation is carried out in the presence of ATP or other nucleoside triphosphates. The (ATP + drug)-induced inhibition of Ca2+ accumulation is pH-dependent, increasing as the pH rises above 7.5. The presence of micromolar concentrations of Ca2+ or Mg2+ during the preincubation prevents the inhibitory effect of ATP plus drug on Ca2+ accumulation or ATPase activity. The (ATP + drug) modification of SR vesicles resulted in stimulation of a rapid Ca2+ efflux from passively loaded vesicles. The ATP-dependent inhibition of Ca2+ accumulation by the drug is obtained with other local anaesthetics. The drug concentration required for 50% inhibition was 0.15 mM for dibucaine and 0.4 mM for both propranolol and tetracaine, whereas it was 5 mM, 8 mM and greater than 10 mM for lidocaine, benzocaine and procaine respectively. The heavy SR vesicles were only slightly affected by the incubation with propranolol or tetracaine in the presence of ATP, but their sensitivity increased markedly after storage at 0 degrees C for 24-48 h. These results suggest that propranolol and some local anaesthetics, in the presence of ATP, stimulate Ca2+ efflux by modifying a protein factor(s) rather than the phospholipid bilayer.  相似文献   

2.
Treatment of sarcoplasmic reticulum membranes with 12 mM-methylbenzimidate (MBI) for 5 min, in the presence of 5 mM-ATP at pH 8.5, resulted in a 2-3-fold stimulation of ATP hydrolysis and over 90% inhibition of Ca2+ accumulation. This phenomenon was strictly dependent upon the presence of nucleotides with the following order of effectiveness: adenosine 5'-[beta, gamma-imido]triphosphate greater than or equal to ATP greater than UTP greater than ADP greater than AMP. Divalent cations such as Ca2+, Mg2+ and Mn2+, when present during the MBI treatment, prevented both the stimulation of ATPase activity and the inhibition of Ca2+ accumulation. Modification with MBI had no effect on E-P formation from ATP, ADP-ATP exchange, Ca2+ binding or ATP-Pi exchange catalysed by the membranes. Membranes modified with MBI in the presence of ATP and then passively loaded with Ca2+ released about 80% of their Ca2+ content within 3 s. Control membranes released only 3% of their Ca2+ during the same time period. MBI modification inhibited Ca2+ accumulation by proteoliposomes reconstituted with the partially purified ATPase but not with the purified ATPase fraction. These results suggest that MBI in the presence of ATP stimulates Ca2+ release by modifying a protein factor(s) other than the (Ca2+ + Mg2+)-ATPase.  相似文献   

3.
The Ca2(+)-ATPase found in the light fraction of sarcoplasmic reticulum vesicles can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. This reaction was inhibited by the phenothiazines trifluoperazine, chlorpromazine, imipramine, and fluphenazine and by the beta-adrenergic blocking agents propranolol and alprenolol. The inhibition was reversed by raising either the Pi or the Mg2+ concentration in the medium and was not affected by the presence of K+. Phosphorylation of the Ca2(+)-ATPase by Pi was also inhibited by ruthenium red and spermidine. These compounds compete with Mg2+, but, unlike the phenothiazines, they did not compete with Pi at the catalytic site, and the inhibition was abolished when K+ was included in the assay medium. The efflux of Ca2+ from loaded vesicles was greatly increased by the phenothiazines and by propranolol and alprenolol. In the presence of 200 microM trifluoperazine, the rate of Ca2+ efflux was higher than 3 mumol of Ca2+/mg of protein/10 s. The activation of efflux by these drugs was antagonized by Pi, Mg2+, K+, Ca2+, ADP, dimethyl sulfoxide, ruthenium red, and spermidine. The increase of Ca2+ efflux caused by trifluoperazine was not correlated with binding of the drug to the membrane lipids. It is concluded that the Ca2+ pump can be uncoupled by different drugs, thereby greatly increasing the efflux of Ca2+ through the ATPase. Displacement of these drugs by the natural ligands of the ATPase blocks the efflux through the uncoupled pathway and limits it to a much smaller rate. Thus, the Ca2(+)-ATPase can operate either as a pump (coupled) or as a Ca2+ channel (uncoupled).  相似文献   

4.
The inhibition of sarcoplasmic reticulumCa2+-ATPase activity by miconazole was dependent on theconcentration of ATP and membrane protein. Half-maximal inhibition wasobserved at 12 µM miconazole when the ATP concentration was 50 µMand the membrane protein was 0.05 mg/ml. When ATP was 1 mM, a lowmicromolar concentration of miconazole activated the enzyme, whereashigher concentrations inhibited it. A qualitatively similar responsewas observed when Ca2+ transport was measured. Likewise,the half-maximal inhibition value was higher when the membraneconcentration was raised. Phosphorylation studies carried out aftersample preequilibration in different experimental settings shed lighton key partial reactions such as Ca2+ binding and ATPphosphorylation. The miconazole effect on Ca2+-ATPaseactivity can be attributed to stabilization of theCa2+-free enzyme conformation giving rise to a decrease inthe rate of the Ca2+ binding transition. The phosphoryltransfer reaction was not affected by miconazole.

  相似文献   

5.
The Ca2+-dependent ATPase activity of sarcoplasmic reticulum was inhibited when membrane vesicles were incubated at 0°C in presence of thiols. 2-mercaptoethanol was the most effective inhibitor from the thiols tested. The effect of 2-mercaptoethanol on the ATPase activity was biphasic; enzyme inhibition originally increased and then decreased with increasing thiol concentration. The inhibitory action of this thiol was significantly higher at low membrane concentrations and the rate of inactivation at 22°C was considerably lower than that at 0°C. Ca2+-ATPase previously inhibited by 2-mercaptoethanol was partially reactivated by incubation with periodate.  相似文献   

6.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

7.
Urea, in nondenaturing concentrations, inhibited Ca2+ uptake by sarcoplasmic reticulum vesicles with no concomitant effect on ATP hydrolysis. This inhibition was antagonized by 5 mM oxalate and 20 mM orthophosphate. At concentrations of 0.2 to 1.0 M, urea induced an increase in the Ca2+ efflux from preloaded vesicles diluted in a medium at pH 7.0 containing 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid, 0.1 mM orthophosphate, and 0.1 mM MgCl2. The urea-induced efflux was arrested by ligands of the (Ca(2+)-Mg2+) ATPase, namely, K+, Mg2+, Ca2+, and ADP, and by ruthenium red and the polyamines spermine, spermidine, and putrescine. In the case of polyamines a dissociation between the effect on the efflux and the net Ca2+ uptake was observed, as only the efflux could be blocked by the drugs. Glycine betaine, trimethylamine-N-oxide, and sucrose antagonized the effects of urea on both the net Ca2+ uptake and the rate of Ca2+ efflux.  相似文献   

8.
Preincubation of sarcoplasmic reticulum with 1 mM-ATP completely inhibits Ca2+ accumulation and stimulates ATPase activity by over 2-fold. This effect of ATP is obtained only when the preincubation is carried out in the presence of Pi, but not with arsenate, chloride or sulphate. The inhibition by ATP of Ca2+ accumulation is pH-dependent, increasing as the pH is increased above 7.5. Inhibition of Ca2+ accumulation is observed on preincubation with ATP, but not with CTP, UTP, GTP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate or adenosine 5'-[beta gamma-imido]triphosphate. The presence of Ca2+, but not Mg2+, during the preincubation, prevents the effect of ATP + Pi on Ca2+ accumulation. The ATP + Pi inhibition of Ca2+ accumulation is not due to modification of the ATPase catalytic cycle, but rather to stimulation of a rapid Ca2+ efflux from actively or passively loaded vesicles. This Ca2+ efflux is inhibited by dicyclohexylcarbodi-imide. Photoaffinity labelling of sarcoplasmic-reticulum membranes with 8-azido-[alpha-32P]ATP resulted in specific labelling of two proteins, of approx. 160 and 44 kDa. These proteins were labelled in the presence of Pi, but not other anions.  相似文献   

9.
We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.  相似文献   

10.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

11.
Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH   总被引:1,自引:0,他引:1  
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.  相似文献   

12.
Summary This review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic head, facing the cytoplasm, and a tail inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature.  相似文献   

13.
The triazine dye, Reactive Red 120, was found to bind tightly (Kd = 30) nM) and with low stoichiometry to sarcoplasmic reticulum membranes. Our finding that this high-affinity binding caused noncompetitive inhibition of the Ca2+-ATPase indicates that the dye-binding site is distinct from both the active site and putative regulatory site. Detergent solubilization (monomerization) of the Ca2+-ATPase caused a 25-fold decrease in affinity for Reactive Red 120, while causing no decrease in affinity toward another dye, Reactive Blue 2. For the Reactive-Red-120-inhibited enzyme, the level of steady-state enzyme phosphorylation by ATP was not significantly different from that exhibited by the control Ca2+-ATPase. The rate of dephosphorylation in the presence and absence of ADP, however, was markedly decreased by the presence of the inhibitor. Distance measurements by fluorescence energy transfer from the active (FITC-reactive) site to the Reactive Red 120 site gave a value of 59 A. Similar experiments yielded an average distance of 35 A between the latter site and the tryptophan residues, most of which are postulated by the 'sequence model' (MacLennan et al. (1985) Nature 316, 696-700) to be located in a transmembrane domain.  相似文献   

14.
Cyclic nucleotide modulation of the sarcoplasmic reticulum calcium pump has been recognized for some time. Little is known, however, of cyclic nucleotide effects on the sarcolemmal Ca2+-pump. In sarcolemmal vesicles prepared from ventricular muscle by a recent technique (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) we have demonstrated via Millipore filtration that 10(-8) M and 10(-9) M cyclic GMP depressed the rate of ATP- and Mg2+-dependent 45Ca2+ uptake by 34% and 52%, respectively. Only at millimolar levels did cyclic AMP have any effect and the respective 5'-nucleotides had no effect at all. Parallel measurement of the associated (Ca2+ + Mg2+)-ATPase in the presence of either cyclic or 5'-nucleotides, however, revealed no concomitant depression in ATP hydrolysis. In another series of experiments, the cyclic GMP effect on 45Ca2+ uptake was associated with a significant decrease in the pump Vmax, and at the most effective concentration of cyclic GMP increased the apparent Km for Ca2+. These results suggest that cyclic GMP may depress ventricular Ca2+ efflux by decreasing the enzyme turnover and to a limited extent, decreasing pump affinity for Ca2+. This supports a hypothesis whereby cyclic GMP might modulate both local biochemical and electrophysiological events by an effect on a discrete, regional pool of intracellular Ca2+.  相似文献   

15.
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation.  相似文献   

16.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

17.
ATP-dependent calcium uptake by isolated sarcoplasmic reticulum vesicles is inhibited by concentrations of free thapsigargin as low as 10(-10) M. This effect is due to primary inhibition of the Ca(2+)-dependent ATPase which is coupled to active transport. When binding of calcium to the activating sites of the enzyme is measured under equilibrium conditions in the absence of ATP, addition of thapsigargin produces strong inhibition. On the other hand, if [tau-32P]ATP is added to ATPase preincubated with Ca2+ under favorable conditions, significant levels of 32P-phosphorylated intermediate are still formed transiently, even in the presence of thapsigargin. The phosphoenzyme, however, decays rapidly as the calcium-enzyme complex is destabilized as a consequence of ATP utilization, and formation of the thapsigargin-enzyme complex is favored. Formation of the thapsigargin-enzyme complex is also favored by Ca2+ chelation with EGTA, with consequent inhibition of the enzyme reactivity to Pi (i.e. reverse of the ATPase hydrolytic reaction). Neither the Ca(2+)- and ATP-induced Ca2+ release from junctional sarcoplasmic reticulum nor the Ca(2+)- and calmodulin-dependent ATPase of plasma membranes (erythrocyte ghosts) were found to be altered by thapsigargin at such low concentrations.  相似文献   

18.
Rabbit antiserum was prepared against a partially purified Ca2+, Mg2+-dependent ATPase [EC 3.6.1.3] of the SR isolated from chicken skeletal muscle. The gamma-globulin fraction of antiserum contained antibodies which combined with the purified ATPase and the SR vesicles. Binding of the antibodies strongly inhibited active transport of Ca2+ ions into the SR, but not passive leakage of Ca2+ ions from the SR. The antibodies scarcely affected the ATPase activity.  相似文献   

19.
The effect of the local anesthetics SKF 525-A, dibucaine, tetracaine, procaine, and benzocaine on sarcoplasmic reticulum vesicles was studied. All the anesthetics tested inhibited the phosphorylation of the Ca(2+)-ATPase by Pi in a competitive manner. Tertiary amine and positively charged anesthetics, in addition to competing with Pi, also decreased the apparent affinity of the ATPase for Mg2+. There was a good correlation between the octanol/water partition coefficients and the inhibitory activity of the different anesthetics. All the anesthetics tested induced a 5- to 10-fold increase in the rate of Ca2+ efflux. This was promoted by the same drug concentration that inhibited the phosphorylation of the ATPase by Pi. The effect on Ca2+ efflux was antagonized by the ligands of the ATPase (Mg2+, K+, Ca2+, MgATP, and ADP) and by the organic polyamines ruthenium red, spermine, spermidine, and putrescine. The natural anion heparin was found to potentiate the effect of the positively charged anesthetics on the rate of Ca2+ efflux. It is concluded that the local anesthetics increase the Ca2+ efflux through a nonenergized state of the Ca(2+)-ATPase, rather than promoting a nonspecific Ca2+ leakage through the membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号