首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acanthamoeba myosin IA is a globular protein composed of a 140-kDa heavy chain and a 17-kDa light chain. It expresses high actin-activated Mg2+-ATPase activity when one serine on the heavy chain is phosphorylated. We previously showed that chymotrypsin cleaves the heavy chain into a COOH-terminal 27-kDa peptide that can bind to F-actin but has no ATPase activity and a complex containing the NH2-terminal 112-kDa peptide and the light chain. The complex also binds F-actin and has full actin-activated Mg2+-ATPase activity when the regulatory site is phosphorylated. We have now localized the ATP binding site to within 27 kDa of the NH2 terminus and the regulatory phosphorylatable serine to a 20-kDa region between 38 and 58 kDa of the NH2 terminus. Under controlled conditions, trypsin cleaves the heavy chain at two sites, 38 and 112 kDa from the NH2 terminus, producing a COOH-terminal 27-kDa peptide similar to that produced by chymotrypsin and a complex consisting of an NH2-terminal kDa peptide, a central 74-kDa peptide, and the light chain. This complex is similar to the chymotryptic complex but for the cleavage which separates the 38- and 74-kDa peptides. The tryptic complex has full (K+, EDTA)-ATPase activity (the catalytic site is functional) and normal ATP-sensitive actin-binding properties. However, the actin-activated Mg2+-ATPase activity and the F-actin-binding characteristics of the tryptic complex are no longer sensitive to phosphorylation of the regulatory serine. Therefore, cleavage between the phosphorylation site and the ATP-binding site inhibits the effects of phosphorylation on actin binding and actin-activated Mg2+-ATPase activity without abolishing the interactions between the ATP- and actin-binding sites.  相似文献   

2.
The actin-activated Mg(2+)-ATPase activity of filamentous Acanthamoeba myosin II is inhibited by phosphorylation of 3 serine residues at the tip of the tail of each heavy chain. From previous studies, it had been concluded that the activity of each molecule in the filament was regulated by the global state of phosphorylation of the filament and was independent of its own phosphorylation state. The actin-activated Mg(2+)-ATPase activity of monomeric phosphorylated myosin II was not known because it polymerizes under the ionic conditions necessary for the expression of this activity. We have now found conditions to maintain myosin II monomeric and active during the enzyme assay. The actin-activated Mg(2+)-ATPase activities of monomeric dephosphorylated and phosphorylated myosin II were found to be the same as the activity of filamentous dephosphorylated myosin II. These results support the conclusion that phosphorylation regulates filamentous myosin II by affecting filament conformation. Consistent with their equivalent enzymatic activities, monomeric and filamentous dephosphorylated myosin II were equally active in an in vitro motility assay in which myosin adsorbed to a surface drives the movement of F-actin. In contrast to their very different enzymatic activities, however, filamentous and monomeric phosphorylated myosin II had similar activities in the in vitro motility assay; both were much less active than monomeric and filamentous dephosphorylated myosin II. One interpretation of these results is that the rate-limiting steps in the two assays are different and that, while the rate-limiting step for actin-activated Mg(2+)-ATPase activity is regulated only at the level of the filament, the rate-limiting step for motility can also be regulated at the level of the monomer.  相似文献   

3.
Syoyu Kobayasi  Tsuyoshi Totsuka 《BBA》1975,376(2):375-385
Electric birefringence measurements have been made on aqueous solutions of myosin subfragments, heavy meromyosin, subfragments 1 and 2 (S-1 and S-2). All of these showed positive electric birefringence. Heavy meromyosin and S-2 showed a large intrinsic Kerr constant. From the analysis of the build up and decay process of the birefringence, the contribution of the slow induced dipole moment was concluded in heavy meromyosin and S-2, although the existence of the permanent dipole moment was not completely excluded. The decay process of the birefringence of heavy meromyosin was found to consist of two components; the fast one of which had a relaxation time of the same order as that of S-1. This is probably due to the presence of a flexible hinge in heavy meromyosin.  相似文献   

4.
The low-shear viscosity of 5-30 microM F-actin was greatly increased by the addition of 0.1-0.5 microM unphosphorylated Acanthamoeba myosins IA and IB. The increase in viscosity was about the same in 2 mM ADP as in the absence of free nucleotide but was much less in 2 mM ATP. The single-headed monomolecular Acanthamoeba myosins were as effective as an equal molar concentration of two-headed muscle heavy meromyosin and much more effective than single-headed muscle myosin subfragment-1. These results suggest that Acanthamoeba myosins IA and IB can cross-link actin filaments as proposed in the accompanying paper (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179) to explain the actin-dependent cooperative increase in actin-activated Mg2+-ATPase activity as a function of the concentration of myosin I. Superprecipitation occurred when phosphorylated myosin IA or IB was mixed with F-actin. In addition to myosin I heavy chain phosphorylation, superprecipitation required Mg2+ and ATP. ATP hydrolysis was linear during the time course of the superprecipitation, and inhibitors of ATP hydrolysis inhibited superprecipitation. A small, dense contracted gel was formed when the reaction was carried out in a cuvette, and a birefringent actomyosin thread resulted from superprecipitation in a microcapillary. The rate and extent of superprecipitation depended on the actin and myosin I concentrations with maximum superprecipitation occurring at an actin:myosin ratio of 7:1. These results provide strong evidence for the ability of Acanthamoeba myosins IA and IB to perform contractile and motile functions.  相似文献   

5.
The Mg2+-ATPase activity of Acanthamoeba myosin IA is activated by F-actin only when the myosin heavy chain is phosphorylated at a single residue. In order to gain insight into the conformational changes that may be responsible for the effects of F-actin and phosphorylation on myosin I ATPase, we have studied their effects on the proteolysis of the myosin IA heavy chain by trypsin. Trypsin initially cleaves the unphosphorylated, 140-kDa heavy chain of Acanthamoeba myosin IA at sites 38 and 112 kDa from its NH2 terminus and secondarily at sites 64 and 91 kDa from the NH2 terminus. F-actin has no effect on tryptic cleavage at the 91- and 112-kDa sites, but does protect the 38-kDa site and the 64-kDa site. Phosphorylation (which occurs very near the 38-kDa site) has no detectable effect on the tryptic cleavage pattern in the absence of F-actin or on F-actin protection of the 64-kDa site, but significantly enhances F-actin protection of the 38-kDa site. Protection of the 64-kDa site is probably due to direct steric blocking because F-actin binds to this region of the heavy chain. The protection of the 38-kDa site by F-actin may be the result of conformational changes in this region of the heavy chain induced by F-actin binding near the 64-kDa site and by phosphorylation. The conformational changes in the heavy chain of myosin IA that are detected by alterations in its susceptibility to proteolysis are likely to be related to the conformational changes that are involved in the phosphorylation-regulated actin-activated Mg2+-ATPase activities of Acanthamoeba myosins IA and IB.  相似文献   

6.
7.
Electric birefringence measurements have been made on aqueous solutions of myosin subfragments, heavy meromyosin, subfragments 1 and 2 (S-1 and S-2). All of these showed positive electric birefringence. Heavy meromyosin and S-2 showed a large intrinsic Kerr constant. From the analysis of the build up and decay process of the birefringence, the contribution of the slow induced dipole moment was concluded in heavy meromyosin and S-2, although the existence of the permanent dipole moment was not completely excluded. The decay process of the birefringence of heavy meromyosin was found to consist of two components; the fast one of which had a relaxation time of the same order as that of S-1. This is probably due to the presence of a flexible hinge in heavy meromyosin.  相似文献   

8.
We have previously shown that inhibition of the ATPase activity of skeletal muscle myosin subfragment 1 (S1) by caldesmon is correlated with the inhibition of S1 binding in the presence of ATP or pyrophosphate (Chalovich, J., Cornelius, P., and Benson, C. (1987) J. Biol Chem. 262, 5711-5716). In contrast, Lash et al. (Lash, J., Sellers, J., and Hathaway, D. (1986) J. Biol. Chem. 261, 16155-16160) have shown that the inhibition of ATPase activity of smooth muscle heavy meromyosin (HMM) by caldesmon is correlated with an increase in the binding of HMM to actin in the presence of ATP. We now show, in agreement, that caldesmon does increase the binding of smooth muscle HMM to actin-tropomyosin while decreasing the ATPase activity. The effect of caldesmon on the binding of smooth HMM is reversed by Ca2+-calmodulin. Caldesmon strengthens the binding of smooth S1.ATP and skeletal HMM.ATP to actin-tropomyosin but to a lesser extent than smooth HMM.ATP. Furthermore, this increase in binding of smooth S1.ATP and skeletal HMM.ATP does not parallel the inhibition of ATPase activity. In contrast, in the absence of ATP, all smooth and skeletal myosin subfragments compete with caldesmon for binding to actin. Thus, the effect that caldesmon has on the binding of myosin subfragments to actin-tropomyosin depends on the source of myosin, the type of subfragment, and the nucleotide present. The inhibition of actin-activated ATP hydrolysis by caldesmon, however, is not greatly different for different smooth and skeletal myosin subfragments. Evidence is presented that caldesmon inhibits actin-activated ATP hydrolysis by attenuating the productive interaction between myosin and actin that normally accelerates ATP hydrolysis. The increased binding seen by some myosin subfragments, in the presence of ATP, may be due to binding of these subfragments to a nonproductive site on actin-caldesmon. The subfragments which show an increase in binding in the presence of ATP and caldesmon appear to bind directly to caldesmon as demonstrated by affinity chromatography.  相似文献   

9.
Interaction of globular actin with myosin subfragments   总被引:9,自引:0,他引:9  
  相似文献   

10.
S S Margossian  S Lowey 《Biochemistry》1978,17(25):5431-5439
The effect of ionic strength, temperature, and divalent cations on the association of myosin with actin was determined in the ultracentrifuge using scanning absorption optics. The association constant (Ka) for the binding of heavy meromyosin (HmM) to F-actin was 1 X 10(7) M-1 at 20 degrees C, in 0.10 M KCl, 0.01 M imidazole (pH 7.0), 5 MM potassium phosphate, 1 mM MgCl2, and 0.3 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Ka was the same for HMM prepared by trypsin or chymotrypsin. The affinity of subfragment 1 (S1) for actin under the same ionic conditions was 3 X 10(6) M-1. Varying the preparative procedure for S1 had little effect on Ka. The small difference in binding energy between HMM and S1 suggests that either only one head can bind strongly to actin at a time or that free energy is lost during the sterically unfavorable attachment of the two heads to actin.  相似文献   

11.
We have shown that purified rabbit skeletal muscle AMP-aminohydrolase binds to rabbit muscle myosin, heavy meromyosin, and Subfragment 2 but does not bind to light meromyosin nor to Subfragment 1. The dissociation constant for binding to myosin was determined to be 0.14 muM. A new sedimentation boundary, presumably reflecting formation of a complex between AMP-aminohydrolase and heavy meromyosin or Subfragment 2, can be observed using the analytical ultracentrifuge. Binding of AMP-aminohydrolase to myosin, heavy meromyosin, or Subfragment 2 is abolished by phosphate (less than 10 mM), an inhibitor of AMP-aminohydrolase. No other rabbit muscle enzyme tested showed any interaction with myosin under the same conditions and there was no indication of complex formation between AMP-aminohydrolase and phosphofructokinase or phosphocreatine kinase in the analytical ultracentrifuge.  相似文献   

12.
13.
The actin-activated Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I was previously shown to be cooperatively dependent on the myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This observation was rationalized by assuming that myosin I contains a high-affinity and a low-affinity F-actin-binding site and that binding at the low-affinity site is responsible for the actin-activated ATPase activity. Therefore, enzymatic activity would correlate with the cross-linking of actin filaments by myosin I, and the cooperative increase in specific activity at high myosin:actin ratios would result from the fact that cross-linking by one myosin molecule would increase the effective F-actin concentration for neighboring myosin molecules. This model predicts that high specific activity should occur at myosin:actin ratios below that required for cooperative interactions if the actin filaments are cross-linked by catalytically inert cross-linking proteins. This prediction has been confirmed by cross-linking actin filaments with either of three gelation factors isolated from Acanthamoeba, one of which has not been previously described, or by enzymatically inactive unphosphorylated Acanthamoeba myosin I.  相似文献   

14.
Immunolocalization of monoclonal antibodies to Acanthamoeba myosin I showed a cross-reactive protein in nuclei (Hagen, S. J., D. P. Kiehart, D. A. Kaiser, and T. D. Pollard. 1986. J. Cell Biol. 103:2121-2128). This protein is antigenically related to myosin I in that nine monoclonal antibodies and three polyclonal antibodies are cross-reactive. However, studies with affinity-purified antibodies and two-dimensional peptide maps show that the protein is not a proteolytic product of myosin I. We have used cell fractionation and column chromatography to purify this protein. It is a dimer of 34-kD polypeptides with a Stokes' radius of 4 nm. A polyclonal antisera generated against the purified protein confirms the nuclear localization seen with the cross-reactive monoclonal antibodies. The 34-kD protein binds actin filaments in an ATP-insensitive manner with a Kd of approximately 0.25 microM without cross-linking, severing, or capping. No ATPase activity was detected in the presence or absence of actin. It also binds to DNA. These unique properties suggest we have discovered a new class of actin-binding protein. We have given this protein the name NAB for "nuclear actin-binding" protein.  相似文献   

15.
A Ca2+-dependent actin-severing 84K Mr protein prepared from bovine aorta caused four-fold activation of smooth muscle actin-activated myosin ATPase at a 1/10(2) molar ratio to actin in the presence of tropomyosin and light chain kinase-calmodulin in a Ca2+-dependent manner, while it inhibited it markedly at a 1/5 molar ratio. Purified actin-tropomyosin filaments under the experimental ATPase conditions were distributed in a range of more than 10 micron in length and the addition of the 84K Mr protein changed the filament length to around 1 micron at a 1/10(2) molar ratio to actin or less than 50 nm at a 1/5 molar ratio in the presence of Ca2+. However, the apparent length of actin filaments alone does not appear to be responsible for the activation of ATPase activity, since in the absence of tropomyosin, the ATPase activation was much less in spite of actin filament length changes. These results indicate the possibility that the 84K Mr protein plays an important role with tropomyosin in at least in vitro smooth muscle actin-myosin interaction.  相似文献   

16.
17.
Acanthamoeba spp. are free-living amoebae that cause amoebic granulomatous encephalitis, skin lesions, and ocular amoebic keratitis in humans. Several authors have suggested that proteases could play a role in the pathogenesis of these diseases. In the present work, we performed a partial biochemical characterization of proteases in crude extracts of Acanthamoeba spp. and in conditioned medium using 7.5% SDS-PAGE copolymerized with 0.1% m/v gelatin as substrate. We distinguished a total of 17 bands with proteolytic activity distributed in two species of Acanthamoeba. The bands ranged from 30 to 188 kDa in A. castellanii and from 34 to 144 kDa in A. polyphaga. Additionally, we showed that the pattern of protease activity differed in the two species of Acanthamoeba when pH was altered. By using protease inhibitors, we found that the proteolytic activities belonged mostly to the serine protease family and secondly to cysteine proteases and that the proteolytic activities from A. castellanii were higher than those in A. polyphaga. Furthermore, aprotinin was found to inhibit crude extract protease activity on Madin-Darby canine kidney (MDCK) monolayers. These data suggest that protease patterns could be more complex than previously reported.  相似文献   

18.
19.
20.
The actin-activated Mg2+-ATPase activities of phosphorylated Acanthamoeba myosins IA and IB were previously found to have a highly cooperative dependence on myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This behavior is reflected in the requirement for a higher concentration of F-actin for half-maximal activation of the myosin Mg2+-ATPase at low ratios of myosin:actin (noncooperative phase) than at high ratios of myosin:actin (cooperative phase). These phenomena could be explained by a model in which each molecule of the nonfilamentous myosins IA and IB contains two F-actin-binding sites of different affinities with binding of the lower affinity site being required for expression of actin-activated ATPase activity. Thus, enzymatic activity would coincide with cross-linking of actin filaments by myosin. This theoretical model predicts that shortening the actin filaments and increasing their number concentration at constant total F-actin should increase the myosin concentration required to obtain the cooperative increase in activity and should decrease the F-actin concentration required to reach half-maximal activity at low myosin:actin ratios. These predictions have been experimentally confirmed by shortening actin filaments by addition of plasma gelsolin, an F-actin capping/severing protein. In addition, we have found that actin "filaments" as short as the 1:2 gelsolin-actin complex can significantly activate Acanthamoeba myosin I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号