首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arbuscular mycorrhizal (AM) symbiosis enhances plant tolerance to water deficit through the alteration of plant physiology and the expression of plant genes. These changes have been postulated to be caused (among others) by different contents of abscisic acid (ABA) between AM and non-AM plants. However, there are no studies dealing with the effects of exogenous ABA on the expression of stress-related genes and on the physiology of AM plants. The aim of the present study was to evaluate the influence of AM symbiosis and exogenous ABA application on plant development, physiology, and expression of several stress-related genes after both drought and a recovery period. Results show that the application of exogenous ABA had contrasting effects on AM and non-AM plants. Only AM plants fed with exogenous ABA maintained shoot biomass production unaltered by drought stress. The addition of exogenous ABA enhanced considerably the ABA content in shoots of non-AM plants, concomitantly with the expression of the stress marker genes Lsp5cs and Lslea and the gene Lsnced. By contrast, the addition of exogenous ABA decreased the content of ABA in shoots of AM plants and did not produce any further enhancement of the expression of these three genes. AM plants always exhibited higher values of root hydraulic conductivity and reduced transpiration rate under drought stress. From plants subjected to drought, only the AM plants recovered their root hydraulic conductivity completely after the 3 d recovery period. As a whole, the results indicate that AM plants regulate their ABA levels better and faster than non-AM plants, allowing a more adequate balance between leaf transpiration and root water movement during drought and recovery.  相似文献   

2.
Drought- and ABA-induced changes in photosynthesis of barley plants   总被引:1,自引:0,他引:1  
The changes caused by drought stress and abscisic acid (ABA) on photosynthesis of barley plants (Hordeum vulgare. L. cv. Alfa) have been studied. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. Cycloheximide (CHI), an inhibitor of stress-induced ABA accumulation, was used to distinguish alterations in photosynthetic reactions that are induced after drought stress in response to elevated ABA levels from those that are caused directly by altered water relations. Four hoars after imposition of drought stress or 2 h after application of ABA, Ihe bulk of the leaf's ABA content measured by enzyme-amplified ELISA, increased 14- and 16-fold, respectively. CHI fully blocked the stress-induced ABA accumulation. Gas exchange measurements and analysis of enzyme activities were used to study the reactions of photosynthesis to drought stress and ABA. Leaf dehydration or ABA treatment led to a noticeable decrease in both the initial slope of the curves representing net photosynthetic rate versus intercellular CO2 concentration and the maximal rate of photosynthesis; dehydration of CHI-treated plants showed much slower inhibition of the latter. The calculated values of the intercellular CO2 concentration, CO2 compensation point and maximal carboxylating efficiency of ribulose 1,5-bisphosphate (RuBP) carboxylase support the suggestion that biochemical factors are involved in the response of photosynthesis to ABA and drought stress. RuBP carboxylase activity was almost unaffected in ABA- and CHI-treated, non-stressed plants. A drop in enzyme activity was observed after leaf dehydration of the control and ABA-treated plants. When barley plants were supplied with ABA, the activity of carbonic anhydrase (CA, EC 4.2.2.1) increased more than 2-fold. Subsequent dehydration caused an over 1.5-fold increase in CA activity of the control plants and a more than 2.5-fold increase in ABA-treated plants. Dehydration of CHI-treated plants caused no change in enzyme activity. It is suggested that increased activity of CA is a photosynthetic response to elevated ABA concentration.  相似文献   

3.
Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by the cytochrome P450 CYP707A family. Among four members of Arabidopsis CYP707As, the expression of CYP707A3 was most highly induced in response to both dehydration and subsequent rehydration. A T-DNA insertional cyp707a3-1 mutant contained higher ABA levels in turgid plants, which showed a reduced transpiration rate and hypersensitivity to exogenous ABA during early seedling growth. On dehydration, the cyp707a3-1 mutant accumulated a higher amount of stress-induced ABA than the wild type, an event that occurred relatively later and was coincident with slow drought induction of CYP707A3. The cyp707a3 mutant plants exhibited both exaggerated ABA-inducible gene expression and enhanced drought tolerance. Conversely, constitutive expression of CYP707A3 relieved growth retardation by ABA, increased transpiration, and a reduction of endogenous ABA in both turgid and dehydrated plants. Taken together, our results indicate that CYP707A3 plays an important role in determining threshold levels of ABA during dehydration and after rehydration.  相似文献   

4.
5.
Chickpea is an important legume crop of the tropics and subtropics. As it is cultivated mostly during the dry season, drought is the major cause of poor chickpea yields. A wild relative of chickpea, Cicer pinnatifidum , is more tolerant than chickpea itself to various abiotic stresses, including drought. A cDNA clone encoding a dehydrin gene, cpdhn1 , was isolated from a cDNA bank prepared from ripening seeds of C. pinnatifidum . Dehydrins are proteins which accumulate in seeds during late embryogenesis and also during stress brought about by drought and other abiotic factors in many plants. The polypeptide deduced to correspond to this gene, cpdhn1 , consists of 195 amino acid residues with a molecular mass of 20.4 kDa. The polypeptide is a Y2K dehydrin exhibiting two conserved 'Y'-segments in the amino-terminal region and one conserved 'K'-segment close to the carboxy terminus. Northern blot analyses showed that cpdhn1 expression was induced not only during seed development, but also in leaves in response to drought, chilling and salinity and also to treatment with ABA or methyl jasmonate. The induction of cpdhn1 expression by methyl jasmonate and ABA indicates that the gene may also be involved in the response to biotic stress. The CpDHN1 protein may thus improve the tolerance of chickpea to a variety of environmental stresses, both abiotic and biotic.  相似文献   

6.
The effects of fluridone on guard cell morphology, chloroplast ultrastructure and accumulation of drought stress-induced abscisic acid (ABA) were studied in Vicia faba L. plants grown under different light conditions. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. The appearance of defective and undeveloped stomata, and chloroplasts with a destroyed thylakoid membrane system was found in fluridone-treated plants grown at a photosynthetic photon flux (PPF) of 600 μmol m-2 s-1. Plants grown at a PPF of 40 μmol m-2 s-1 had diminished levels of ABA after imposition of dehydration. Fluridone treatment reduced the level of ABA in both unstressed and dehydrated leaves. Accumulation of ABA in the control plants was considerably reduced when they were exposed to dark periods of 24, 48 and 72 h just before imposition of the stress. Twenty-four hours after the dark treatment dehydration of the leaves resulted in a 3-fold decrease in the level of stress-induced ABA, and 72 h after dark treatment the amount of stress-induced ABA approximated the prestressed values. Fluridone-treated plants failed to accumulate ABA under water stress. In addition to functionally active chloroplasts, well-developed and functional stomata are required for drought stress to elicit a rise in ABA.  相似文献   

7.
8.
9.
Abscisic acid (ABA) regulates the physiological and biochemical mechanisms required to tolerate drought stress, which is considered as an important abiotic stress. It has been postulated that ABA might be involved in regulation of plant phenolic compounds biosynthesis, especially anthocyanins that accumulate in plants subjected to drought stress; however, the evidence for this postulate remains elusive. Therefore, we studied whether ABA is involved in phenolic compounds accumulation, especially anthocyanin biosynthesis, using drought stressed Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully‐expanded leaves of drought stressed A. chilensis plants during 24, 48 and 72 h of the experiment. Plants were harvested and leaves were collected separately to determine the biochemical status. We observed that fluridone treatments significantly decreased ABA concentrations and total anthocyanin (TA) concentrations in stressed plants, including both young and fully‐expanded leaves. TA concentrations following fluridone treatment were reduced around fivefold, reaching control plant levels. ABA application restored ABA levels as well as TA concentrations in stressed plant at 48 h of the experiment. We also observed that TA concentrations followed the same pattern as ABA concentrations in the ABA treated plants. Quantitative real‐time PCR revealed that AcUFGT gene expression decreased in fully‐expanded leaves of stressed plants treated with fluridone, while a subsequent ABA application increased AcUFGT expression. Taken together, our results suggest that ABA is involved in the regulation of anthocyanin biosynthesis under drought stress.  相似文献   

10.
11.
12.
13.
14.
15.
The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.  相似文献   

16.
17.
18.
Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis.  相似文献   

19.
Experiencing diverse and recurring biotic and abiotic stresses throughout life, plants have evolved mechanisms to respond, survive and, eventually, adapt to changing habitats. The initial response to drought involves a large number of genes that are involved also in response to other stresses. According to current models, this initial response is non‐specific, becoming stress‐specific only at later time points. The question, then, is whether non‐specific activation of various stress‐signalling systems leading to the expression of numerous stress‐regulated genes is a false‐alarm (panicky) response or whether it has biologically relevant consequences for the plant. Here, it is argued that the initial activation of genes associated other stresses reflects an important event during which stress‐specific mechanisms are generated to prevent subsequent activation of non‐drought signalling pathways. How plants discriminate between a first and a repeated dehydration stress and how repression of non‐drought specific genes is achieved will be discussed on the example of jasmonic acid‐associated Arabidopsis genes activated by a first, but not subsequent, dehydration stresses. Revealing how expression of various biotic/abiotic stress responding genes is prevented under recurring drought spells may be critical for our understanding of how plants respond to dynamically changing environments.  相似文献   

20.
* Proposed mechanisms of embolism recovery are controversial for plants that are transpiring while undergoing cycles of dehydration and rehydration. * Here, water stress was imposed on grapevines (Vitis vinifera), and the course of embolism recovery, leaf water potential (Psi(leaf)), transpiration (E) and abscisic acid (ABA) concentration followed during the rehydration process. * As expected, Psi(leaf) and E decreased upon water stress, whereas xylem embolism and leaf ABA concentration increased. Upon rehydration, Psi(leaf) recovered in 5 h, whereas E fully recovered only after an additional 48 h. The ABA content of recovering leaves was higher than in droughted controls, both on the day of rewatering and the day after, suggesting that ABA accumulated in roots during drought was delivered to the rehydrated leaves. In recovering plants, xylem embolism in petioles, shoots, and roots decreased during the 24 h following rehydration. * A model is proposed to describe plant recovery after rehydration based on three main points: embolism repair occurs progressively in shoots and further in roots and in petioles, following an almost full recovery of Psi(leaf); hydraulic conductance recovers during diurnal transpiring hours, when formation and repair of embolisms occurs in all plant organs; an ABA residual signal in rehydrated leaves hinders stomatal opening even when water relations have recovered, suggesting that an ABA-induced transpiration control promotes gradual embolism repair in rehydrated grapevines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号