共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations 总被引:8,自引:3,他引:8
下载免费PDF全文

O'Rear JL Wang S Feig AL Beigelman L Uhlenbeck OC Herschlag D 《RNA (New York, N.Y.)》2001,7(4):537-545
Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only approximately 10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587-595; Curtis & Bartel, RNA, 2001, this issue, pp. 546-552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small. 相似文献
5.
6.
7.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation. 相似文献
8.
9.
Adsorption of monovalent and divalent cations by phospholipid membranes. The monomer-dimer problem.
下载免费PDF全文

A generalization of the Stern theory is derived to treat the simultaneous adsorption of monovalent cations and divalent cations by single-component phospholipid membranes, where the ion:phospholipid binding stoichiometries are 1:1 for the monovalent cations and 1:1 and/or 1:2 for the divalent cations. This study treats both the situation in which the monovalent and divalent cations compete for membrane binding sites and that in which they do not compete. The general formalism of the screening/binding problem is reviewed, and it is shown how the adsorption problem can be isolated from the electrostatics. The statistical mechanics of mixed 1:1- and 1:2-stoichiometric adsorption (the monomer-dimer problem) is treated, and the problem of simultaneous 1:1 and 1:2 binding is solved. A simple expression for this solution, given in the Bethe approximation, is combined with the electrostatics to yield an adsorption isotherm encompassing both 1:1 monovalent-cation, and 1:1 and 1:2 divalent-cation, binding to charged membranes. A comparison with the simplified treatment of previous authors is made and the significance of their assumptions clarified in light of the present result. The present and previous treatments are plotted for a representative case of Na+ and Ca++ binding to a phosphatidylserine membrane. Criteria are established to permit unambiguous experimental testing of the present vs. previous treatments. 相似文献
10.
J C Seidel 《Biochimica et biophysica acta》1969,189(2):162-170
11.
A theory is presented on the electrostatic properties of the surface area of phosphatidyl-glycerol monolayers spreading at an air-water interface in the presence of monovalent and divalent cations. In the present theory, the adsorption of monovalent and divalent cations to the membranes is taken into account, besides the dissociation of protons, as a possible cause of the change of surface charge density with the variation of pH or ion concentrations. It is also pointed out that, in the presence of structure-making ions such as Li+ and Na+, the nearest-neighbour interactions between proton dissociation sites become important for the monolayers in the gel state to yield a sharp expansion of the surface area with the increase of pH. The present theory shows quantitative agreements with previously-observed data. 相似文献
12.
13.
14.
J R Trudell A K Costa C A Csernansky 《Biochemical and biophysical research communications》1989,162(1):45-50
The effect of a matrix of concentrations of Ca2+ (0.01, 0.1, 0.5, 5 mM), Mg2+ (0.2, 0.5, 1, 2, 5, 10 mM), and Na+ (50, 100, 150 mM) on the phosphorylation of histone H-1 by protein kinase C was measured in the presence of 5 mol % diacylglycerol and Mg-ATP in both phosphatidylserine micelles and liposomes formed from a 1:4 mixture of phosphatidylserine and phosphatidylcholine. Monovalent cations (150 mM) reduced activity by 60 and 84% in the micelle and liposome assay systems, respectively. Inhibition was also observed with 5 mM Ca2+ and 10 mM Mg2+. The phosphorylating activity was compared with computer calculations of the negative electrostatic potentials (psi o) of the phospholipid membranes in the presence of the cations. 相似文献
15.
16.
The effect of monovalent cations on the catalytic action of thrombin has been examined utilizing a variety of substrates. Sodium chloride noncompetitively inhibited the action of thrombin on α-tosyl-l-arginine methyl ester and α-N-benzoyl-l-arginine-p-nitroanilide. No inhibition was noted when α-N-benzoyl-l-arginine ethyl ester was the substrate. The extent of inhibition was considerably less with either potassium chloride or lithium chloride. The rate of inactivation of thrombin by 1-chloro-3-tosylamido-7-amino-l-2-heptanone was reduced in the presence of sodium ions. The results are interpreted to show a specific effect of sodium ions on the ability of the active-site histidine residue to participate in thrombic catalysis. 相似文献
17.
18.
Y Oosawa 《Biophysical journal》1989,56(6):1217-1223
The cation-selective channel from Tetrahymena cilia is permeable to both monovalent and divalent cations. The single channel conductance in mixed solutions of K+ and Ca2+ was determined by the Gibbs-Donnan ratio of K+ and Ca2+, and the binding sites of this channel were considered to be always occupied by two potassium ions or by one calcium ion under the experimental conditions: 5-90 mM K+ and 0.5-35 mM Ca2+ (Oosawa and Kasai, 1988). A two-barrier model for the channel was introduced and the values of Michaelis-Menten constants and maximum currents carried by K+ and Ca2+ were calculated using this model. Single channel current amplitudes and reversal potentials were calculated from these values. The calculated single-channel currents were compared with those obtained experimentally. The calculated reversal potentials were compared with the resting potentials of Tetrahymena measured in various concentrations of extracellular K+ and Ca2+. The method of calculation of ionic currents and reversal potentials presented here is helpful for understanding the properties of the channels permeable to both monovalent and divalent cations. 相似文献
19.
Dennis W. Jung Guey-Yueh Shi Gerald P. Brierley 《Archives of biochemistry and biophysics》1981,209(2):356-361
Depletion of mitochondrial divalent cations by addition of the ionophore A23187 results in a marked increase in passive exchange activity. The exchange is activated by increasing pH and temperature and inhibited by added divalent cations. The reaction is independent of the amount of A23187 present, but depends on the concentration of external K+ (Km = 25 mm). Intramitochondrial 42K+ in cation-depleted mitochondria exchanges passively with external Na+ and Li+, but not with choline+. The evidence suggests that removal of mitochondrial divalent cations by A23187 activates the endogenous exchange component of the mitochondrion and that the activated exchanger promotes cation/cation exchange in the absence of a metabolic pH gradient. 相似文献
20.
Cellular activity of nitrate reductase in Pseudomonas denitrificans which had been grown under denitrifying conditions was increased several times upon incubation of cell suspension with monovalent cations. The enhancement of nitrate reductase activity caused by monovalent cations was ascribed to the activation of the enzyme, since the membrane fraction isolated from the cells after the cation treatment retained the elevated levels of enzyme activity. However, monovalent cations had no effect when added directly to cell-free homogenate, suggesting an important role of some definite structure of membrane in the expression of the effect of monovalent cations. 相似文献