首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hagel JM  Facchini PJ 《Planta》2005,221(6):904-914
Feruloyltyramine (FT) and 4-coumaroyltyramine (4CT) participate in the defense of plants against pathogens through their extracellular peroxidative polymerization, which is thought to reduce cell wall digestibility. Hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) and tyrosine decarboxylase (TYDC; EC 4.1.1.25) are purported to play key roles in the stress-induced regulation of tyramine-derived hydroxycinnamic acid amide (HCAAT) metabolism. Transgenic tobacco (Nicotiana tabacum cv. Xanthi) was engineered to constitutively express tobacco THT. A T1 plant over-expressing THT was crossbred with T1 tobacco expressing opium poppy TYDC2, to produce a T2 line with elevated THT and TYDC activities compared with wild type plants. The effects of an independent increase in TYDC or THT activity, or a dual increase in both TYDC and THT on the cellular pools of HCAAT pathway intermediates and the accumulation of soluble and cell wall-bound FT and 4CT were examined. Increased TYDC activity resulted in a larger cellular pool of tyramine and lower levels of L-phenylalanine in transgenic leaves. In contrast, elevated THT activity reduced tyramine levels. HCAAT levels were low in healthy leaves, but were induced in response to wounding and accumulated around wound sites. Similarly, endogenous THT and TYDC activities were wound-induced. The rate of wound-induced HCAAT accumulation was highest in transgenic plants with elevated THT and TYDC activities showing that both enzymes exert control over the flux of intermediates involved in HCAAT biosynthesis under some conditions.  相似文献   

2.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

3.
Tyramine, one of the various biogenic amines found in plants, is derived from the aromatic L-amino acid tyrosine through the catalytic reaction of tyrosine decarboxylase (TYDC). Tyramine overproduction by constitutive expression of TYDC in rice plants leads to stunted growth, but an increased number of tillers. To regulate tyramine production in rice plants, we expressed TYDC under the control of a methanol-inducible plant tryptophan decarboxylase (TDC) promoter and generated transgenic T(2) homozygous rice plants. The transgenic rice plants showed normal growth phenotypes with slightly increased levels of tyramine in seeds relative to wild type. Upon treatment with 1% methanol, the transgenic rice leaves produced large amounts of tyramine, whereas no increase in tyramine production was observed in wild-type plants. The methanol-induced accumulation of tyramine in the transgenic rice leaves was inversely correlated with the tyrosine level. These data indicate that tyramine production in rice plants can be artificially controlled using the methanol-inducible TDC promoter, suggesting that this promoter could be used to selectively induce the expression of other proteins or metabolites in rice plants.  相似文献   

4.
Tryptophan decarboxylase (TDC) from Catharanthus roseus (periwinkle) converts tryptophan to the indole-alkaloid tryptamine. When the TDC gene was expressed in transgenic tobacco, the 55-kD TDC enzyme and tryptamine accumulated. Bemisia tabaci (sweetpotato whitefly) reproduction on transgenic plants decreased up to 97% relative to controls. Production of tryptamine, its derivatives, or other products resulting from TDC activity may discourage whitefly reproduction and provide a single-gene-based plant protection strategy.  相似文献   

5.
The substrate specificity of tryptophan (Trp) decarboxylase (TDC) for Trp and tyrosine (Tyr) decarboxylase (TYDC) for Tyr was used to modify the in vivo pools of these amino acids in transgenic tobacco. Expression of TDC and TYDC was shown to deplete the levels of Trp and Tyr, respectively, during seedling development. The creation of artificial metabolic sinks for Trp and Tyr also drastically affected the levels of phenylalanine, as well as those of the non-aromatic amino acids methionine, valine, and leucine. Transgenic seedlings also displayed a root-curling phenotype that directly correlated with the depletion of the Trp pool. Non-transformed control seedlings could be induced to display this phenotype after treatment with inhibitors of auxin translocation such as 2,3,5-triiodobenzoic acid or N-1-naphthylphthalamic acid. The depletion of aromatic amino acids was also correlated with increases in the activities of the shikimate and phenylpropanoid pathways in older, light-treated transgenic seedlings expressing TDC, TYDC, or both. These results provide in vivo confirmation that aromatic amino acids exert regulatory feedback control over carbon flux through the shikimate pathway, as well as affecting pathways outside of aromatic amino acid biosynthesis.  相似文献   

6.
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal.  相似文献   

7.
8.
9.
A full-length complementary DNA clone encoding tryptophan decarboxylase (TDC; EC 4.1.1.28) from Catharanthus roseus (De Luca V, Marineau C, Brisson N [1989] Proc Natl Acad Sci USA 86: 2582-2586) driven by the CaMV 35S promoter was introduced into tobacco (Nicotiana tabacum) to direct the synthesis of the protoalkaloid tryptamine from endogenous tryptophan. Young, fully expanded leaves of CaMV 35S-TDC transformed plants had from four to 45 times greater TDC activity than did controls. Tryptamine accumulated in transgenic plants to levels that were directly proportional to their TDC specific activity. Despite their increased tryptamine content, the growth and development of the CaMV 35S-TDC plants appeared normal with no significant differences in indole-3-acetic acid levels between high tryptamine and control plants. Plants with the highest TDC activity contained more than 1 milligram of tryptamine per gram fresh weight, a 260-fold increase over controls.  相似文献   

10.
Jang SM  Ishihara A  Back K 《Plant physiology》2004,135(1):346-356
Transgenic rice (Oryza sativa) plants were engineered to express a N-(hydroxycinnamoyl)transferase from pepper (Capsicum annuum), which has been shown to have hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase activity, a key enzyme in the synthesis of hydroxycinnamic acid amides, under the control of constitutive maize (Zea mays) ubiquitin promoter. The transgenic rice plants require foliar application of amines to support synthesis of hydroxycinnamic acid amides, suggestive of limiting amine substrates in rice shoots. In addition, when T2 homozygous transgenic rice plants were grown in the presence of amines or phenolic acids, two novel compounds were exclusively identified in the leaves of the transgenic plants. These compounds eluted earlier than p-coumaroyltyramine and feruloyltyramine during HPLC chromatography and were identified as p-coumaroylserotonin and feruloylserotonin by liquid chromatography/mass spectrometry and other methods. To test whether the unpredicted production of serotonin derivatives is associated with the pepper N-(hydroxycinnamoyl)transferase, the substrate specificity of the pepper enzyme was analyzed again. Purified recombinant pepper N-(hydroxycinnamoyl)transferase exhibited a serotonin N-hydroxycinnamoyltransferase (SHT) activity, synthesized p-coumaroylserotonin and feruloylserotonin in vitro, and demonstrated a low K(m) for serotonin. SHT activity was inhibited by 10 to 50 mm tyramine. In addition, SHT activity was predominantly found in the root tissues of wild-type rice in parallel with the synthesis of serotonin derivatives, suggesting that serotonin derivatives are synthesized in the root of rice. This is the first report of SHT activity and the first demonstration, to our knowledge, that serotonin derivatives can be overproduced in vivo in transgenic rice plants that express serotonin N-(hydroxycinnamoyl)transferase.  相似文献   

11.
Tryptophan decarboxylase (TDC) from Catharanthus roseus (periwinkle) converts tryptophan to the indole-alkaloid tryptamine, an anti-insect compound. This TDC cDNA was transformed and expressed in transgenic Petunia hybrida under the control of the strong and constitutive 35S promoter from cauliflower mosaic virus. Kanamycin screening and Southern hybridization with the TDC cDNA confirmed plant transformation. Northern analysis indicated greater TDC mRNA accumulation in transgenic plants compared to non-transformed plants. Additionally, eight-fold more tryptamine accumulated in leaves of kanamycin resistant transgenic plants compared to non-transformed plants. Flower petals from the transgenic plants contained lower tryptamine levels than their leaves. Because tryptamine titers were higher in transformed plants compared to controls, over-expression of the TDC enzyme may partially overcome endogenous tryptamine catabolism and/or other negative biosynthetic regulation. Future alteration of tryptamine breakdown in Petunia may further increase total endogenous tryptamine concentrations, potentially discouraging insect reproduction on these transgenic plants.  相似文献   

12.
Tryptophan-derived secondary metabolites, including serotonin and its hydroxycinnamic acid amides, markedly accumulate in rice leaves in response to pathogen attack. These compounds have been implicated in the physical defense system against pathogen invasion by being deposited in cell walls. Serotonin is biosynthesized from tryptophan via tryptamine, and tryptophan decarboxylase (TDC) catalyzes the first committed reaction. In this study, (S)-α-(fluoromethyl)tryptophan (S-αFMT) was utilized to investigate the effects of the inhibition of TDC on the defense responses of rice leaves. S-αFMT, enantiospecifically synthesized from l-tryptophan, effectively inhibited TDC activity extracted from rice leaves infected by Bipolaris oryzae. The inhibition rate increased dependently on the incubation time, indicating that S-αFMT served as a suicide substrate. Treatment of rice seedlings with S-αFMT suppressed accumulation of serotonin, tryptamine, and hydroxycinnamic acid amides of serotonin in a dose-dependent manner in B. oryzae-inoculated leaves. The lesions formed on seedlings treated with S-αFMT lacked deposition of brown materials, and those leaves were severely damaged in comparison with leaves without S-αFMT treatment. Administrating tryptamine to S-αFMT-treated leaves restored accumulation of tryptophan-derived secondary metabolites as well as deposition of brown material. In addition, tryptamine administration reduced damage caused by fungal infection. Accordingly, the accumulation of tryptophan-derived secondary metabolites was suggested to be part of the effective defense mechanism of rice.  相似文献   

13.
As part of the response to pathogen infection, potato plants accumulate soluble and cell wall-bound phenolics such as hydroxycinnamic acid tyramine amides. Since incorporation of these compounds into the cell wall leads to a fortified barrier against pathogens, raising the amounts of hydroxycinnamic acid tyramine amides might positively affect the resistance response. To this end, we set out to increase the amount of tyramine, one of the substrates of the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction, by placing a cDNA encoding a pathogen-induced tyrosine decarboxylase from parsley under the control of the 35S promoter and introducing the construct into potato plants via Agrobacterium tumefaciens-mediated transformation. While no alterations were observed in the pattern and quantity of cell wall-bound phenolic compounds in transgenic plants, the soluble fraction contained several new compounds. The major one was isolated and identified as tyrosol glucoside by liquid chromatography-electrospray ionization-high resolution mass spectrometry and NMR analyses. Our results indicate that expression of a tyrosine decarboxylase in potato does not channel tyramine into the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction but rather unexpectedly, into a different pathway leading to the formation of a potential storage compound.  相似文献   

14.
Yao K  De Luca V  Brisson N 《The Plant cell》1995,7(11):1787-1799
The creation of artificial metabolic sinks in plants by genetic engineering of key branch points may have serious consequences for the metabolic pathways being modified. The introduction into potato of a gene encoding tryptophan decarboxylase (TDC) isolated from Catharanthus roseus drastically altered the balance of key substrate and product pools involved in the shikimate and phenylpropanoid pathways. Transgenic potato tubers expressing the TDC gene accumulated tryptamine, the immediate decarboxylation product of the TDC reaction. The redirection of tryptophan into tryptamine also resulted in a dramatic decrease in the levels of tryptophan, phenylalanine, and phenylalanine-derived phenolic compounds in transgenic tubers compared with nontransformed controls. In particular, wound-induced accumulation of chlorogenic acid, the major soluble phenolic ester in potato tubers, was found to be two- to threefold lower in transgenic tubers. Thus, the synthesis of polyphenolic compounds, such as lignin, was reduced due to the limited availability of phenolic monomers. Treatment of tuber discs with arachidonic acid, an elicitor of the defense response, led to a dramatic accumulation of soluble and cell wall-bound phenolics in tubers of untransformed potato plants but not in transgenic tubers. The transgenic tubers were also more susceptible to infection after inoculation with zoospores of Phytophthora infestans, which could be attributed to the modified cell wall of these plants. This study provides strong evidence that the synthesis and accumulation of phenolic compounds, including lignin, could be regulated by altering substrate availability through the introduction of a single gene outside the pathway involved in substrate supply. This study also indicates that phenolics, such as chlorogenic acid, play a critical role in defense responses of plants to fungal attack.  相似文献   

15.
A transgenic cell suspension culture of Nicotiana tabacum L. `Petit Havana' SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells. Received: 25 February 1996 / Revision received: 16 August 1996 / Accepted: 30 September 1996  相似文献   

16.
The biosynthesis of feruloyltyramine in Nicotiana tabacum Xanthi n.c. leaves is achieved through the action of the enzyme feruloyl-CoA tyramine N-feruloyl-CoA transferase. Its activity is increased 5- to 8-fold following infection by tobacco mosaic virus at 20°. The enzyme is soluble, its MW is 45 000, and it can synthesize a wide range of amides due to its low specificity for cinnamoyl-CoA thioesters and aromatic amines. Its affinity for feruloyl-CoA fragments is also described.  相似文献   

17.
Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of L-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype.  相似文献   

18.
Tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine in mitragynine biosynthesis via the shikimate pathway. Using the rapid amplification of cDNA ends (RACE) technique, the gene encoding TDC from Mitragyna speciosa was cloned (designated as MsTDC). The MsTDC cDNA contained an open reading frame (ORF) of 1,521 base pairs (bp) encoding 506 amino acid residues. It had a pyridoxal-phosphate (PLP)-binding site at the amino acid position 313–334 residues. The MsTDC showed homology of 68–76 % to the TDC of other plants. Heterologous expression in Escherichia coli afforded the soluble proteins as an apparent band of 57 kDa as judged by SDS-PAGE. Expression of the MsTDC in M. speciosa hairy roots under the 35S promoter was performed by insertion of MsTDC into pCAMBIA1300-gfp. The transgenic hairy root lines were detected by fluorescence microscopy and showed an increased accumulation of tryptamine.  相似文献   

19.
Cell suspension and root cultures ofPeganum harmala were established expressing a tryptophan decarboxylase cDNA clone fromCatharanthus roseus under the control of the cauliflower mosaic virus (CaMV) 35S promoter and terminator sequences. The tryptophan decarboxylase activity of some of the transgenic lines was greatly enhanced (25–40 pkat/mg protein) as compared to control cultures (1–5 pkat per mg protein) and remained high during the growth cycle. While the levels of tryptamine, the product of the reaction catalysed by tryptophan decarboxylase, were unchanged in the transgenic lines, their serotonin contents were enhanced up to 10-fold, reaching levels of 1.5 to 2% dry mass. Thus, tryptamine produced by the engineered reaction was apparently immediately used for enhanced serotonin biosynthesis. The yields of serotonin in transgenic lines overexpressing tryptophan decarboxylase activity were further enhanced to 3–5% dry mass by feedingl-tryptophan, while no or only minor effects were seen when control cultures were fed. These data demonstrate that the production of a plant secondary metabolite can be enhanced greatly via genetic manipulation of the level of activity of the rate-limiting enzyme. The amounts of -carboline alkaloids, the other tryptamine-derived metabolites ofP. harmala, in contrast, were not affected by the overproduction of tryptamine. The information needed for successfully predicting manipulations that enhance production of a secondary metabolite is discussed.  相似文献   

20.
Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21–6.84, 1.50–2.19 and 1.27–3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号