首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFalpha-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Sp?tzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.  相似文献   

4.
5.
Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the embryo. When pipe is expressed uniformly in the follicle cell layer, a strong ventralization of the resulting embryos is observed. Here, we show that this ventralization is dependent on the other members of the dorsal group of genes controlling dorsal-ventral polarity, but not on the state of the Epidermal Growth Factor Receptor signal transduction pathway which defines egg chamber polarity. Pipe protein expressed in vertebrate tissue culture cells localizes to the endoplasmic reticulum. Strikingly, coexpression of the dorsal group gene windbeutel in those cells directs Pipe to the Golgi. Similarly, Pipe protein exhibits an altered subcellular localization in the follicle cells of females mutant for windbeutel. Thus, Windbeutel protein enables the correct subcellular distribution of Pipe to facilitate its pattern-forming activity.  相似文献   

6.
Many genetic cascades are conserved in evolution, yet they trigger different responses and hence determine different cell fates at specific times and positions in development. At stage 10 of oogenesis, mirror is expressed in anterior-dorsal follicle cells, and we show that this is dependent upon the Gurken signal from the oocyte. The fringe gene is expressed in a complementary pattern in posterior-ventral follicle cells at the same stage. Ectopic expression of mirror represses fringe expression, thus linking the epidermal growth factor receptor (EGFR) signalling pathway to the Fringe signalling pathway via Mirror. The EGFR pathway also triggers the cascade that leads to dorsal-ventral axis determination in the embryo. We used twist as an embryonic marker for ventral cells. Ectopic expression of mirror in the follicle cells during oogenesis ultimately represses twist expression in the embryo, and leads to similar phenotypes to the ectopic expression of the activated form of EGFR. Thus, mirror also controls the Toll signalling pathway, leading to Dorsal nuclear transport. In summary, we show that the Mirror homeodomain protein provides a link that coordinates the Gurken/EGFR signalling pathway (initiated in the oocyte) with the Fringe/Notch/Delta pathway (in follicle cells). This coordination is required for epithelial morphogenesis, and for producing the signal in ventral follicle cells that determines the dorsal/ventral axis of the embryo.  相似文献   

7.
8.
9.
Recent work on Drosophila oogenesis has begun to reveal how the first asymmetries in development arise and how these relate to the later events that localise the positional cues which define the embryonic axes. The Cadherin-dependent positioning of the oocyte creates an anterior-posterior polarity that is transmitted to the embryo through the localisation and localised translation of bicoid, oskar, and nanos mRNA. In contrast, dorsal-ventral polarity arises from the random migration of the nucleus to the anterior of the oocyte, where it determines where gurken mRNA is translated and localised. Gurken signalling then defines the embryonic dorsal-ventral axis by restricting pipe expression to the ventral follicle cells, where Pipe regulates the production of an unidentified cue that activates the Toll signalling pathway.  相似文献   

10.
Dorsal-ventral specification of the Drosophila embryo is mediated by signaling pathways which have been very well described in genetic terms. However, little is known about the physiology of Drosophila development. By imaging patterns of free cytosolic calcium in Drosophila embryos, we found that several calcium gradients are generated along the dorsal-ventral axis. The most pronounced gradient is formed during stage 5, in which calcium levels are high dorsally. Manipulation of the stage 5 calcium gradient affects specification of the amnioserosa, the dorsal-most region of the embryo. We further show that this calcium gradient is inhibited in pipe, Toll, and dorsal mutants, but is unaltered in decapentaplegic (dpp) or punt mutants, suggesting that the stage 5 calcium gradient is formed by a suppression of ventral calcium concentrations. We conclude that calcium plays a role in specification of the dorsal embryonic region.  相似文献   

11.
DeLotto R 《Fly》2011,5(2):141-146
The Toll receptor propagates the ventralizing signal designating dorsal/ventral cell fate in the Drosophila embryo. The application of live-imaging approaches to this classical developmental signaling pathway is yielding some surprising new insights into Toll receptor signaling. In addition to its previously known plasma membrane localization, Toll is present in Rab5+ early endosomes. Dominant, constitutively active forms of Toll preferentially partition into endosomes. Blocking endocytosis locally prevents Toll from signaling suggesting that endocytosis is required for Toll to signal. Augmenting endocytosis increases Toll signaling. Both interventions alter the shape of the Dorsal gradient globally indicating an important role of endocytosis in fixing spatial information for the Dorsal gradient.  相似文献   

12.
13.
Dorsoventral polarity of the Drosophila embryo requires maternal sp?tzle-Toll signaling to establish a nuclear gradient of Dorsal protein. The shape of this gradient is altered in embryos produced by females carrying dominant alleles of easter (ea(D)). The easter gene encodes a serine protease that generates processed Sp?tzle, which is proposed to act as the Toll ligand. By examining the expression domains of the zygotic genes zen, sog, rho and twist, which are targets of nuclear Dorsal, we show that the slope of the Dorsal gradient is progressively flattened in stronger ea(D) alleles. In the wild-type embryo, activated Easter is found in a high M(r) complex called Ea-X, which is hypothesized to contain a protease inhibitor. In ea(D) embryo extracts, we detect an Easter form corresponding to the free catalytic domain, which is never observed in wild type. These mutant ea(D) proteins retain protease activity, as determined by the production of processed Sp?tzle both in the embryo and in cultured Drosophila cells. These experiments suggest that the ea(D) mutations interfere with inactivation of catalytic Easter, and imply that this negative regulation is essential for generating the wild-type shape of the Dorsal gradient.  相似文献   

14.
The Cbl family of proteins downregulate epidermal growth factor receptor (Egfr) signaling via receptor internalization and destruction. These proteins contain two functional domains, a RING finger domain with E3 ligase activity, and a proline rich domain mediating the formation of protein complexes. The Drosophila cbl gene encodes two isoforms, D-CblS and D-CblL. While both contain a RING finger domain, the proline rich domain is absent from D-CblS. We demonstrate that expression of either isoform is sufficient to rescue both the lethality of a D-cbl null mutant and the adult phenotypes characteristic of Egfr hyperactivation, suggesting that both isoforms downregulate Egfr signaling. Interestingly, targeted overexpression of D-CblL, but not D-CblS, results in phenotypes characteristic of reduced Egfr signaling and suppresses the effect of constitutive Egfr activation. The level of D-CblL was significantly correlated with the phenotypic severity of reduced Egfr signaling, suggesting that D-CblL controls the efficiency of downregulation of Egfr signaling. Furthermore, reduced dynamin function suppresses the effects of D-CblL overexpression in follicle cells, suggesting that D-CblL promotes internalization of activated receptors. D-CblL is detected in a punctate cytoplasmic pattern, whereas D-CblS is mainly localized at the follicle cell cortex. Therefore, D-CblS and D-CblL may downregulate Egfr through distinct mechanisms.  相似文献   

15.
16.
Twelve maternal effect loci are required for the production of Drosophila embryos with a correct dorsoventral axis. Analysis of mosaic females indicates that the expression of the genes nudel, pipe, and windbeutel is required in the somatic tissue, presumably in the follicle cells that surround the oocyte. Thus, information coming from outside the egg cell influences dorsoventral pattern formation during embryogenesis. In transplantation experiments, the perivitelline fluid from the compartment surrounding the embryo can restore dorsoventral pattern to embryos from females mutant for nudel, pipe, or windbeutel. The positioning of the transplanted pervitelline fluid also determines the polarity of the restored dorsoventral axis. We propose that the polarizing activity, normally present at the ventral side of the egg, is a ligand for the Toll receptor. Presumably, local activation of the Toll protein by the ligand initiates the formation of the nuclear concentration gradient of the dorsal protein, thereby determining dorsoventral pattern.  相似文献   

17.
Dorsal-ventral polarity of the Drosophila embryo is established by a nuclear gradient of Dorsal protein, generated by successive gurken-Egfr and sp?tzle-Toll signaling. Overexpression of extracellular Sp?tzle dramatically reshapes the Dorsal gradient: the normal single peak is broadened and then refined to two distinct peaks of nuclear Dorsal, to produce two ventral furrows. This partial axis duplication, which mimics the ventralized phenotype caused by reduced gurken-Egfr signaling, arises from events in the perivitelline fluid of the embryo and occurs at the level of Sp?tzle processing or Toll activation. The production of two Dorsal peaks is addressed by a model that invokes action of a diffusible inhibitor, which is proposed to normally regulate the slope of the Dorsal gradient.  相似文献   

18.
19.
Drosophila females that lack Toll gene activity produce dorsalized embryos, in which all embryonic cells behave like the dorsal cells of the wild-type embryo. Injection of wild-type cytoplasm into young Toll- embryos restores their ability to produce a normal dorsal-ventral pattern in a position-dependent manner. No matter where the cytoplasm is injected relative to the dorsal-ventral axis of the egg shell, the position of the injected cytoplasm defines the ventralmost part of the rescued pattern. Although injection of wild-type cytoplasm into mutants at six other dorsal-group loci also restores the ability to produce lateral and ventral structures, only Toll- embryos lack any residual dorsal-ventral polarity. Experiments suggest that the activity of the Toll product is normally regulated by other dorsal-group genes and that the function of the Toll product is to provide the source for a morphogen gradient in the dorsal-ventral axis of the wild-type embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号