首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of the phosphodiester bond cleaved by homogeneous Mg2+-dependent apurinic endodeoxyribonuclease (EC 3.1.25.2; APE) of bovine calf thymus has been determined by using a 21-mer oligonucleotide containing a single central apurinic site as a substrate. A single product of cleavage consistent with cleavage of the oligonucleotide 5' to the apurinic site, and leaving a 3' hydroxyl group, was identified. This enzyme is, therefore, a class II apurinic endonuclease. The substrate specificities of this enzyme have been determined by using a variety of natural and synthetic DNAs or oligonucleotides containing base-free sites. Calf thymus APE has an absolute requirement for a double-stranded DNA and requires an abasic site as a substrate. The presence of a base fragment such as a urea residue, an alkoxyamine group attached to the C'-1 position of the abasic site, or reduction of the C'-1 aldehyde abolishes the APE activity of this enzyme. Synthetic abasic sites containing either ethylene glycol, propanediol, or tetrahydrofuran interphosphate linkages are excellent substrates for bovine APE. These results indicate that APE has no absolute requirement for either ring-opened or ring-closed deoxyribose moieties in its recognition of DNA-cleavage substrates. The enzyme may interact with the pocket in duplex DNA that results from the base loss or with the altered conformations of the phosphodiester backbone that result from the abasic site.  相似文献   

2.
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.  相似文献   

3.
Abasic (AP) sites constitute a common form of DNA damage, arising from the spontaneous or enzymatic breakage of the N-glycosyl bond and the loss of a nucleotide base. To examine the effects of such damage on DNA structure, especially in the vicinity of the abasic sugar, four 1.5 ns molecular dynamics simulations of double-helical DNA dodecamers with and without a single abasic (tetrahydrofuran, X) lesion in a 5′-d(CXT) context have been performed and analyzed. The results indicate that the abasic site does not maintain a hole or gap in the DNA, but instead perturbs the canonical structure and induces additional flexibility close to the abasic site. In the apurinic simulations (i.e., when a pyrimidine is opposite the AP site), the abasic sugar flipped in and out of the minor groove, and the gap was water filled, except during the occurrence of a novel non-Watson–Crick C-T base pair across the abasic site. The apyrimidinic gap was not penetrated by water until the abasic sugar flipped out and remained extrahelical. Both AP helices showed kinks of 20–30° at the abasic site. The Watson–Crick hydrogen bonds are more transient throughout the DNA double helices containing an abasic site. The abasic sugar displayed an unusually broad range of sugar puckers centered around the northern pucker. The increased motion of the bases and backbone near the abasic site appear to correlate with sequence-dependent helical stability. The data indicate that abasic DNA contorts more easily and in specific ways relative to unmodified DNA, an aspect likely to be important in abasic site recognition and hydrolysis.  相似文献   

4.
We report the first observation of a spin-labeled ds 23-mer oligonucleotide by high-field electron spin resonance (ESR) and demonstrate that it interacts with AP endonuclease, the key enzyme in DNA abasic site repair. The spin labeled 23-mer with a U at position 12 of the upper strand is processed by uracil DNA glycosylase to provide the abasic substrate. With a spin-label two nucleotides away from the abasic site, AP endo binds and cleaves when the label is 3' but not 5' to the abasic site. These results confirm that the disposition of the bases immediately upstream of the abasic site is particularly critical for cleavage by AP endo, and establish that DNA-protein interactions in this important enzyme can be examined using spin-labeled substrates.  相似文献   

5.
Formamidopyrimidine-DNA-glycosylase (Fpg pro tein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2′-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation.  相似文献   

6.
Unwinding of unnatural substrates by a DNA helicase   总被引:6,自引:0,他引:6  
Helicases separate double-stranded DNA into single-stranded DNA intermediates that are required during replication and recombination. These enzymes are believed to transduce free energy available from ATPase activity to unwind the duplex and translocate along the nucleic acid lattice. The nature of enzyme-substrate interactions between helicases and duplex DNA substrates has not been well-defined. Most helicases require a single-stranded DNA overhang adjacent to duplex DNA in order to initiate unwinding. The strand containing the overhang is referred to as the loading strand whereas the complementary strand is referred to as the displaced strand. We have investigated the interactions between a DNA helicase and the DNA substrate by replacing the displaced strand with a nucleic acid mimic, peptide nucleic acid (PNA). PNA is capable of forming duplex structures with DNA according to Watson-Crick base pairing rules, but contains a N-(2-aminoethyl)glycine backbone in place of the deoxyribose phosphates. The PNA-DNA hybrids had higher melting temperatures than their DNA-DNA counterparts. Dda helicase, from bacteriophage T4, was able to unwind the DNA-PNA substrates at similar rates as DNA-DNA substrates. The results indicate that the rate-limiting step for unwinding is relatively insensitive to the chemical nature of the displaced strand and the thermal stability of oligonucleotide substrates.  相似文献   

7.
Bertram RD  Hayes CJ  Soultanas P 《Biochemistry》2002,41(24):7725-7731
During the past 5 years a great deal of structural and biochemical information has given us a detailed insight into the molecular mechanism of action of the PcrA DNA helicase and challenged previous notions about the molecular mechanism of action of helicases in general. Despite this wealth of information the mechanisms of the interaction of helicases with their DNA substrates and their unidirectional translocation along ssDNA are poorly understood. In this study, we synthesized a chemically modified DNA substrate with reduced backbone rotational flexibility and minimal steric hindrance and studied its effect on the activity of the monomeric 3'-5' DNA helicase, PcrA. Our results show that a single modification on the backbone of the translocating strand is sufficient to inhibit the activity of PcrA helicase, suggesting that rotational flexibility of the backbone is important for efficient unwinding.  相似文献   

8.
Synthetic oligonucleotides with a fluorescent coumarin group replacing a basepair have been used in recent time-resolved Stokes-shift experiments to measure DNA dynamics on the femtosecond to nanosecond timescales. Here, we show that the APE1 endonuclease cleaves such a modified oligonucleotide at the abasic site opposite the coumarin with only a fourfold reduction in rate. In addition, a noncatalytic mutant (D210N) binds tightly to the same oligonucleotide, albeit with an 85-fold reduction in binding constant relative to a native oligonucleotide containing a guanine opposite the abasic site. Thus, the modified oligonucleotide retains substantial biological activity and serves as a useful model of native DNA. In the complex of the coumarin-containing oligonucleotide and the noncatalytic APE1, the dye's absorption spectrum is shifted relative to its spectrum in either water or within the unbound oligonucleotide. Thus the dye occupies a site within the DNA:protein complex. This result is consistent with modeling, which shows that the complex accommodates coumarin at the site of the orphaned base with little distortion of the native structure. Stokes-shift measurements of the complex show surprisingly little change in the dynamics within the 40 ps-40 ns time range.  相似文献   

9.
Human RNase H1 cleaves RNA exclusively in an RNA/DNA duplex; neither double-strand DNA nor double-strand RNA is a viable substrate. Previous studies suggest that the helical geometry and sugar conformation of the DNA and RNA may play a role in the selective recognition of the heteroduplex substrate by the enzyme. We systematically evaluated the influence of sugar conformation, minor groove bulk, and conformational flexibility of the heteroduplex on enzyme efficiency. Modified nucleotides were introduced into the oligodeoxyribonucleotide at the catalytic site of the heteroduplex and consisted of southern, northern, and eastern biased sugars with and without 2'-substituents, non-hydrogen bonding base modifications, abasic deoxyribonucleotides, intranucleotide hydrocarbon linkers, and a ganciclovir-modified deoxyribonucleotide. Heteroduplexes containing modifications exhibiting strong northern or southern conformational biases with and without a bulky 2'-substituent were cleaved at a significantly slower rate than the unmodified substrate. Modifications imparting the greatest degree of conformational flexibility were the poorest substrates, resulting in dramatically slower cleavage rates for the ribonucleotide opposing the modification and the surrounding ribonucleotides. Finally, modified heteroduplexes containing modifications predicted to mimic the sugar pucker and conformational flexibility of the deoxyribonucleotide exhibited cleavage rates comparable with those of the unmodified substrate. These data suggest that sugar conformation, minor groove width, and the relative positions of the intra- and internucleotide phosphates are the crucial determinants in the selective recognition of the heteroduplex substrate by human RNase H1 and offer immediate steps to improve the performance of DNA-like antisense oligonucleotides.  相似文献   

10.
Here, we have investigated the consequences of the loss of proof-reading exonuclease function on the ability of the replicative T4 DNA polymerase (gp43) to elongate past a single abasic site located on model DNA substrates. Our results show that wild-type T4 DNA polymerase stopped at the base preceding the lesion on two linear substrates having different sequences, whereas the gp43 D219A exonuclease-deficient mutant was capable of efficient bypass when replicating the same substrates. The structure of the DNA template did not influence the behavior of the exonuclease-proficient or deficient T4 DNA polymerases. In fact, when replicating a damaged "minicircle" DNA substrate constructed by circularizing one of the linear DNA, elongation by wild-type enzyme was still completely blocked by the abasic site, while the D219A mutant was capable of bypass. During DNA replication, the T4 DNA polymerase associates with accessory factors whose combined action increases the polymerase-binding capacity and processivity, and could modulate the behavior of the enzyme towards an abasic site. We thus performed experiments measuring the ability of wild-type and exonuclease-deficient T4 DNA polymerases, in conjunction with these replicative accessory proteins, to perform translesion DNA replication on linear or circular damaged DNA substrates. We found no evidence of either stimulation or inhibition of the bypass activities of the wild-type and exonuclease-deficient forms of T4 DNA polymerase following addition of the accessory factors, indicating that the presence or absence of the proof-reading activity is the major determinant in dictating translesion synthesis of an abasic site by T4 DNA polymerase.  相似文献   

11.
Reineks EZ  Berdis AJ 《Biochemistry》2004,43(2):393-404
Despite the nontemplating nature of the abasic site, dAMP is often preferentially inserted opposite the lesion, a phenomenon commonly referred to as the "A-rule". We have evaluated the molecular mechanism accounting for this unique behavior using a thorough kinetic approach to evaluate polymerization efficiency during translesion DNA replication. Using the bacteriophage T4 DNA polymerase, we have measured the insertion of a series of modified nucleotides and have demonstrated that increasing the size of the nucleobase does not correlate with increased insertion efficiency opposite an abasic site. One analogue, 5-nitroindolyl-2'-deoxyriboside triphosphate, was unique as it was inserted opposite the lesion with approximately 1000-fold greater efficiency compared to that for dAMP insertion. Pre-steady-state kinetic measurements yield a kpol value of 126 s(-1) and a Kd value of 18 microM for the insertion of 5-nitroindolyl-2'-deoxyriboside triphosphate opposite the abasic site. These values rival those associated with the enzymatic formation of a natural Watson-Crick base pair. These results not only reiterate that hydrogen bonding is not necessary for nucleotide insertion but also indicate that the base-stacking and/or desolvation capabilities of the incoming nucleobase may indeed play the predominant role in generating efficient DNA polymerization. A model accounting for the increase in catalytic efficiency of this unique nucleobase is provided and invokes pi-pi stacking interactions of the aromatic moiety of the incoming nucleobase with aromatic amino acids present in the polymerase's active site. Finally, differences in the rate of 5-nitroindolyl-2'-deoxyriboside triphosphate insertion opposite an abasic site are measured between the bacteriophage T4 DNA polymerase and the Klenow fragment. These kinetic differences are interpreted with regard to the differences in various structural components between the two enzymes and are consistent with the proposed model for DNA polymerization.  相似文献   

12.
DNA glycosylases help maintain the genome by excising chemically modified bases from DNA. Escherichia coli 3-methyladenine DNA glycosylase I (TAG) specifically catalyzes the removal of the cytotoxic lesion 3-methyladenine (3mA). The molecular basis for the enzymatic recognition and removal of 3mA from DNA is currently a matter of speculation, in part owing to the lack of a structure of a 3mA-specific glycosylase bound to damaged DNA. Here, high-resolution crystal structures of Salmonella typhi TAG in the unliganded form and in a ternary product complex with abasic DNA and 3mA nucleobase are presented. Despite its structural similarity to the helix-hairpin-helix superfamily of DNA glycosylases, TAG has evolved a modified strategy for engaging damaged DNA. In contrast to other glycosylase-DNA structures, the abasic ribose is not flipped into the TAG active site. This is the first structural demonstration that conformational relaxation must occur in the DNA upon base hydrolysis. Together with mutational studies of TAG enzymatic activity, these data provide a model for the specific recognition and hydrolysis of 3mA from DNA.  相似文献   

13.
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

14.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

15.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

16.
DNA helicase E from calf thymus has been characterized with respect to DNA substrate specificity. The helicase was capable of displacing DNA fragments up to 140 nucleotides in length, but was unable to displace a DNA fragment 322 nucleotides in length. DNA competition experiments revealed that helicase E was moderately processive for translocation on single strand M13mp18 DNA, and that the helicase would dissociate and rebind during a 15 minute reaction. Comparison of the rate of ATPase activity catalyzed by helicase E on single strand DNA substrates of different lengths, suggested a processivity consistent with the competition experiments. The helicase displayed a preference for displacing primers whose 5' terminus was fully annealed as opposed to primers with a 12 nucleotide 5' unannealed tail. The presence of a 12 nucleotide 3' tail had no effect on the rate of displacement. DNA helicase E was capable of displacing a primer downstream of either a four nucleotide gap, a one nucleotide gap or a nick in the DNA substrate. Helicase E was inactive on a fully duplex DNA 30 base pairs in length. Calf thymus RP-A stimulated the DNA displacement activity of helicase E. These properties are consistent with a role for DNA helicase E in chromosomal DNA repair.  相似文献   

17.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

18.
Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal‐dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg2+‐ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction‐competent conformation. Active‐site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1‐DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule.  相似文献   

19.
BACKGROUND: Base excision repair initiated by human thymine-DNA glycosylase (TDG) results in the generation of abasic sites (AP sites) in DNA. TDG remains bound to this unstable repair intermediate, indicating that its transmission to the downstream-acting AP endonuclease is a coordinated process. Previously, we established that posttranslational modification of TDG with Small Ubiquitin-like MOdifiers (SUMOs) facilitates the dissociation of the DNA glycosylase from the product AP site, but the underlying molecular mechanism remained unclear. RESULTS: We now show that upon DNA interaction, TDG undergoes a dramatic conformational change, which involves its flexible N-terminal domain and accounts for the nonspecific DNA binding ability of the enzyme. This function is required for efficient processing of the G.T mismatch but then cooperates with the specific DNA contacts established in the active site pocket of TDG to prevent its dissociation from the product AP site after base release. SUMO1 conjugation to the C-terminal K330 of TDG modulates the DNA binding function of the N terminus to induce dissociation of the glycosylase from the AP site while it leaves the catalytic properties of base release in the active site pocket of the enzyme unaffected. CONCLUSION: Our data provide insight into the molecular mechanism of SUMO modification mediated modulation of enzymatic properties of TDG. A conformational change, involving the N-terminal domain of TDG, provides unspecific DNA interactions that facilitate processing of a wider spectrum of substrates at the expense of enzymatic turnover. SUMOylation then reverses this structural change in the product bound TDG.  相似文献   

20.
Base excision repair is a major pathway for the removal of simple lesions in DNA including base damage and base loss (abasic site). Base excision repair requires the coordinated action of several repair and ancillary proteins, the impairment of which can lead to genetic instability. Using a protein-DNA cross-linking assay during repair in human whole cell extracts, we monitored proteins involved in the initial steps of repair of a substrate containing a site-specific abasic site to address the molecular events following incision of the abasic site by AP endonuclease. We find that after dissociation of AP endonuclease from the incised abasic site, both DNA polymerase beta (Pol beta) and the DNA ligase IIIalpha-XRCC1 heterodimer efficiently bind/cross-link to the substrate DNA. We also find that the cross-linking efficacy of the DNA ligase IIIalpha-XRCC1 heterodimer was decreased about 2-fold in the Pol beta-deficient cell extract but was rescued by addition of purified wild type but not a mutant Pol beta protein that does not interact with the DNA ligase IIIalpha-XRCC1 heterodimer. We further demonstrate that Pol beta and the DNA ligase IIIalpha-XRCC1 heterodimer are present at equimolar concentrations in whole cell extracts and that Pol beta has a 7-fold higher affinity to the incised abasic site containing substrate than DNA ligase IIIalpha. Using gel filtration of whole cell extracts prepared at physiological salt conditions (0.15 M NaCl), we find no evidence for a stable preexisting complex of DNA Pol beta with the DNA ligase IIIalpha-XRCC1 heterodimer. Taken together, these data suggest that following incision by AP endonuclease, DNA Pol beta recognizes and binds to the incised abasic site and promotes recruitment of the DNA ligase IIIalpha-XRCC1 heterodimer through its interaction with XRCC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号