首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Complement receptor 1-related gene/protein y (Crry) is a murine membrane protein that regulates the activity of both classical and alternative complement pathways. We used a recombinant soluble form of Crry fused to the hinge, CH2, and CH3 domains of mouse IgG1 (Crry-Ig) to determine whether inhibition of complement activation prevents and/or reverses mesenteric ischemia/reperfusion-induced injury in mice. Mice were subjected to 30 min of ischemia, followed by 2 h of reperfusion. Crry-Ig was administered either 5 min before or 30 min after initiation of the reperfusion phase. Pretreatment with Crry-Ig reduced local intestinal mucosal injury and decreased generation of leukotriene B(4) (LTB(4)). When given 30 min after the beginning of the reperfusion phase, Crry-Ig resulted in a decrease in ischemia/reperfusion-induced intestinal mucosal injury comparable to that occurring when it was given 5 min before initiation of the reperfusion phase. The beneficial effect of Crry-Ig administered 30 min after the initiation of reperfusion coincided with a decrease in PGE(2) generation despite the fact that it did not prevent local infiltration of neutrophils and did not have a significant effect on LTB(4) production. These data suggest that complement inhibition protects animals from reperfusion-induced intestinal damage even if administered as late as 30 min into reperfusion and that the mechanism of protection is independent of neutrophil infiltration or LTB(4) inhibition.  相似文献   

2.
3.
We examined the effect of the A3 adenosine receptor (AR) agonist IB-MECA on infarct size in an open-chest anesthetized dog model of myocardial ischemia-reperfusion injury. Dogs were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion and 3 h of reperfusion. Infarct size and regional myocardial blood flow were assessed by macrohistochemical staining with triphenyltetrazolium chloride and radioactive microspheres, respectively. Four experimental groups were studied: vehicle control (50% DMSO in normal saline), IB-MECA (100 microg/kg iv bolus) given 10 min before the coronary occlusion, IB-MECA (100 microg/kg iv bolus) given 5 min before initiation of reperfusion, and IB-MECA (100 microg/kg iv bolus) given 10 min before coronary occlusion in dogs pretreated 15 min earlier with the ATP-dependent potassium channel antagonist glibenclamide (0.3 mg/kg iv bolus). Administration of IB-MECA had no effect on any hemodynamic parameter measured including heart rate, first derivative of left ventricular pressure, aortic pressure, LAD coronary blood flow, or coronary collateral blood flow. Nevertheless, pretreatment with IB-MECA before coronary occlusion produced a marked reduction in infarct size ( approximately 40% reduction) compared with the control group (13.0 +/- 3.2% vs. 25.2 +/- 3.7% of the area at risk, respectively). This effect of IB-MECA was blocked completely in dogs pretreated with glibenclamide. An equivalent reduction in infarct size was observed when IB-MECA was administered immediately before reperfusion (13.1 +/- 3.9%). These results are the first to demonstrate efficacy of an A3AR agonist in a large animal model of myocardial infarction by mechanisms that are unrelated to changes in hemodynamic parameters and coronary blood flow. These data also demonstrate in an in vivo model that IB-MECA is effective as a cardioprotective agent when administered at the time of reperfusion.  相似文献   

4.
The present study compares the effects of PGE1 and PGA1 on ventricular arrhythmias following coronary artery occlusion. The left anterior descending coronary artery (LAD) was occluded abruptly in 55 cats anesthetized with alpha-chloralose. Lead II of the ECG along with arterial blood pressure were monitored for one hour after occlusion. Either vehicle or prostaglandin was infused into the left atrium (LA) or femoral vein (IV) 15 min prior to and for 1 hour after LAD occlusion at a rate of 0.15 ml/min. Prostaglandin was infused at either a high dose (1.0 microgram/kg/min) or a low dose (0.1 microgram/kg/min). Infusion of either PGE1 or PGA1 produced a marked fall in blood pressure and heart rate which returned toward control before occlusion. Abrupt occlusion of the LAD produced ventricular arrhythmia in all cats ranging from ventricular premature beats to ventricular fibrillation (VF). The control animals had a 38% incidence of VF. VF occurred in 75% of the animals in which PGE1 was administered into the LA at either the high or low dose while the occurrence in those administered PGA1 was 67% and 50%, respectively. Intravenous administration of the high dose of PGE1 or PGA1 resulted in VF in 13% and 67% of the animals after LAD occlusion, respectively. These data indicate that the IV administration of PGE1 may protect the heart from VF while the infusion of PGE1 or PGA1 into the LA may enhance VF after LAD occlusion.  相似文献   

5.
We sought to determine whether administration of a very low, nonvasodilating dose of a highly selective adenosine A(2A) receptor agonist (ATL-193 or ATL-146e) would be cardioprotective in a canine model of myocardial stunning produced by multiple episodes of transient ischemia. Twenty-four anesthetized open-chest dogs underwent either 4 (n=12) or 10 cycles (n=12) of 5-min left anterior descending coronary artery (LAD) occlusions interspersed by 5 or 10 min of reperfusion. Left ventricular thickening was measured from baseline through 180 min after the last occlusion-reperfusion cycle. Regional flow was measured with microspheres. In 12 of 24 dogs, A(2A) receptor agonist was infused intravenously beginning 2 min prior to the first occlusion and continuing throughout reperfusion at a dose below that which produces vasodilatation (0.01 microg x kg(-1) x min(-1)). Myocardial flow was similar between control and A(2A) receptor agonist-treated animals, confirming the absence of A(2) receptor agonist-induced vasodilatation. During occlusion, there was severe dyskinesis with marked LAD zone thinning in all animals. After 180 min of reperfusion following the last cycle, significantly greater recovery of LAD zone thickening was observed in A(2A) receptor agonist-treated vs. control animals in both the 4-cycle (91 +/- 7 vs. 56 +/- 12%, respectively; P<0.05) and the 10-cycle (65 +/- 9 vs. 8 +/- 16%, respectively; P<0.05) occlusion groups. The striking amount of functional recovery observed with administration of low, nonvasodilating doses of adenosine A(2A) agonist ATL-193 or ATL-146e supports their further evaluation for the attenuation of postischemic stunning in the clinical setting.  相似文献   

6.
The aim of the study was to investigate the pathological role of free radicals during myocardial reperfusion. Low (0.5 mg/kg body weight) and high doses (5 mg/kg) of superoxide dismutase (SOD) were infused into the left atrium of mongrel dogs for 4 min starting 29 min after ligation and 1 min before reperfusion of the left anterior descending coronary artery (LAD). Arterial blood pressure, heart rate, electrocardiogram, and the regional contractile force of the left ventricle were monitored throughout the ligation (30 min) and reperfusion periods (20 min). Concentrations of creatine kinase (CK) and malondialdehyde (MDA) in the coronary sinus blood were determined before (0 min) and during ligation (15 and 25 min) and during reperfusion of the LAD (2, 7, and 20 min). In other groups of dogs, the effect of the two doses of SOD on epicardial blood flow was investigated during ligation and reperfusion by the measurement of epicardial temperature using a thermocardiograph. Experimental subjects were mongrel dogs of either sex (n = 25), weight 10-35 kg. Compared to controls (mean +/- SEM, 43.1 +/- 1.2; n = 7), the number of ventricular extrasystoles during the first 5 min of reperfusion was significantly (p < .001) decreased in dogs treated with the high dose (15.01 +/- 2.14; n = 5), but not in those receiving the low dose of the drug (34.6 +/- 5.66; n = 5). The concentrations of CK increased gradually until the end of reperfusion without differences among the different groups. Plasma MDA was the highest in control dogs 7 min after reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.  相似文献   

8.
The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury in the isolated perfused heart. To test the hypothesis that RAGE-dependent mechanisms modulated responses to I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD), we subjected male homozygous RAGE(-/-) mice and their wild-type age-matched littermates to 30 min of occlusion of the LAD followed by reperfusion. At 48 h of reperfusion, hematoxylin and eosin staining revealed significantly larger infarct size in wild-type versus RAGE(-/-) mice. Contractile function, as evaluated by echocardiography 48 h after reperfusion, revealed that fractional shortening was significantly higher in RAGE(-/-) versus wild-type mice. Plasma levels of creatine kinase were markedly decreased in RAGE(-/-) versus wild-type animals. Integral to the impact of RAGE deletion on diminished myocardial damage after infarction was significantly decreased apoptosis in the heart, as assessed by TUNEL staining, release of cytochrome c, and caspase-3 activity. Experiments investigating the impact of RAGE on early signaling pathways influencing myocardial ischemic injury revealed attenuation of JNK and STAT5 phosphorylation in RAGE(-/-) mouse hearts versus robust activation observed in wild-type mice upon ischemia and reperfusion. Solidifying the link to RAGE, these experiments revealed that infarction stimulated the rapid production of advanced glycation end-products in the heart. Thus, we tested the effect of ligand decoy soluble RAGE (sRAGE). Administration of sRAGE protected the myocardium from ischemic damage, similar to the effects observed in RAGE(-/-) mouse hearts. Taken together, these data implicate RAGE and its ligands in the pathogenesis of I/R injury and identify JNK and STAT signal transduction as central downstream effector pathways of the ligand-RAGE axis in the heart subjected to I/R injury.  相似文献   

9.
Long-term ethanol consumption at low to moderate levels exerts cardioprotective effects in the setting of ischemia and reperfusion (I/R). The aims of this study were to determine whether 1) a single orally administered dose of ethanol [ethanol preconditioning (EtOH-PC)] would induce a biphasic temporal pattern of protection (early and late phases) against the inflammatory responses to I/R and 2) adenosine and nitric oxide (NO) act as initiators of the late phase of protection. Ethanol was administered as a bolus to C57BL/6 mice at a dose that achieved a peak plasma concentration of ~45 mg/dl 30 min after gavage and returned to control levels within 60 min of alcohol ingestion. The superior mesenteric artery was occluded for 45 min followed by 60 min of reperfusion beginning 10 min or 1, 2, 3, 4, or 24 h after ethanol ingestion, and the numbers of fluorescently labeled rolling and firmly adherent (stationary) leukocytes in single postcapillary venules of the small intestine were quantified using intravital microscopic approaches. I/R induced marked increases in leukocyte rolling and adhesion, effects that were attenuated by EtOH-PC 2-3 h before I/R (early phase), absent when assessed after 10 min, 1 h, and 4 h of ethanol ingestion, with an even more powerful late phase of protection reemerging when I/R was induced 24 h later. The anti-inflammatory effects of late EtOH-PC were abolished by treatment with adenosine deaminase, an adenosine A(2) (but not A(1)) receptor antagonist, or a NO synthase (NOS) inhibitor during the period of EtOH-PC. Preconditioning with an adenosine A(2) (but not an A(1)) receptor agonist in lieu of ethanol 24 h before I/R mimicked the protective actions of late phase EtOH-PC. Like EtOH-PC, the effect of preconditioning with an adenosine A(2) receptor agonist was abrogated by coincident NOS inhibition. These findings suggest that EtOH-PC induces a biphasic temporal pattern of protection against the proinflammatory effects of I/R. In addition, our observations are consistent with the hypothesis that the late phase of EtOH-PC is triggered by NO formed secondary to adenosine A(2) receptor-dependent activation of NOS during the period of ethanol exposure.  相似文献   

10.
Ovarian hyperstimulation after exogenous gonadotropin stimulation is believed to be a cause of poor success after artificial insemination (AI) in felids. The objectives of this study were to assess the effect of oral melatonin on endogenous ovarian activity in the domestic cat and subsequent eCG/hCG-induced ovarian activity. Serum melatonin concentrations peaked approximately 1h after a single oral dose of 30 mg melatonin and remained elevated above endogenous day-time concentrations for >8h. The calculated circulating half-life (mean +/- S.E.M) of oral melatonin was 45.4+/-3.5 min, and the elimination rate constant (k(10)) was 55.2+/-4.2 min(-1). Oral melatonin (30 mg per day) administered 3h before lights-off effectively and reversibly suppressed estrous elevations in fecal estrogens after 25 days of treatment. There was a progressive decrease in baseline estrogen concentrations from inter-estrous concentrations after 25 days of treatment to below inter-estrous concentrations after 35 days of treatment. Oral melatonin treatment (30 mg per day for 30 days) prior to eCG/hCG administration only marginally reduced ancillary follicle development and had no significant effect on the quantity or quality of embryos produced by AI. Thus, oral melatonin effectively inhibited endogenous ovarian activity and had no adverse impact on embryo quality after AI in the domestic cat; however, this treatment was only marginally effective in minimizing eCG/hCG-induced ovarian hyperstimulation.  相似文献   

11.
The present study compares the effects of PGE1 and PGA1 on ventricular arrhythmias following coronary artery occlusion. The left anterior descending coronary artery (LAD) was occluded abruptly in 55 cats anesthetized with α-chloralose. Lead II of the ECG along with arterial blood pressure were monitored for one hour after occlusion. Either vehicle or prostaglandin was infused into the left atrium (LA) or femoral vein (IV) 15 min prior to and for 1 hour after LAD occlusion at a rate of 0.15 ml/min. Prostaglandin was infused at either a high dose (1.0 μg/kg/min) or a low dose (0.1 μg/kg/min). Infusion of either PGE1 or PGA1 produced a marked fall in blood pressure and heart rate which returned toward control before occlusion. Abrupt occlusion of the LAD produced ventricular arrhythmia in all cats ranging from ventricular premature beats to ventricular fibrillation (VF). The control animals had a 38% incidence of VF. VF occurred in 75% of the animals in which PGE1 was administered into the LA at either the high or low dose while the occurrence in those administered PGA1 was 67% and 50%, respectively. Intravenous administration of the high dose of PGE1 or PGA1 resulted in VF in 13% and 67% of the animals after LAD occlusion, respectively. These data indicate that the IV administration of PGE1 may protect the heart from VF while the infusion of PGE1 or PGA1 into the LA may enhance VF after LAD occlusion.  相似文献   

12.
The aim of the present study was to determine the effect of activation of melatonin receptor sites on the activity of noradrenergic neurons in the C3H/HeN mouse brain. Changes in noradrenergic activity were assessed by measuring norepinephrine (NE) levels in the hypothalamus, frontal cortex, and hippocampus following inhibition of NE synthesis with alpha-methyl-p-tyrosine (alpha-MpT) (300 mg/kg, i.p., 2 h). 6-Chloromelatonin (1-30 mg/kg, i.p.) significantly retarded the alpha-MpT-induced decrease in NE levels in the hypothalamus, but not in hippocampus and frontal cortex. This effect was observed at 30 min and 60 min after 6-chloromelatonin administration and was dose dependent. At noon, when the levels of endogenous melatonin are low, the melatonin receptor antagonist luzindole (30 mg/kg, i.p., 30 min) did not affect the depletion of NE by alpha-MpT; however, it (1-30 mg/kg) completely antagonized the 6-chloromelatonin-induced reduction of NE depletion elicited by alpha-MpT in hypothalamus. These results suggest that activation of melatonin receptor sites in brain of C3H/HeN mouse retarded the depletion of NE elicited by alpha-MpT. At midnight, when the levels of melatonin are high, luzindole (30 mg/kg) significantly accelerated the depletion of NE by alpha-MpT in hypothalamus, but not in frontal cortex or hippocampus, suggesting activation of melatonin receptor sites by endogenous melatonin. We conclude that activation of melatonin receptor sites in C3H/HeN mouse brain by endogenous melatonin inhibits the activity of noradrenergic neurons innervating the hypothalamus.  相似文献   

13.
The aim of this study was to determine the role of calcitonin gene-related peptide (CGRP) in the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Ethanol was administered to wild-type C57BL/6 mice on day 1 as a bolus by gavage at a dose that produces a peak plasma ethanol of 45 mg/dl 30 min after administration. Twenty-four hours later (day 2), the superior mesenteric artery was occluded for 45 min followed by 70 min of reperfusion (I/R). Intravital fluorescence microscopy was used to quantify the numbers of rolling (LR) and adherent (LA) leukocytes labeled with carboxyfluorescein diacetate succinimidyl ester in postcapillary venules of the small intestine. I/R increased LR and LA, effects that were prevented by antecedent ethanol. The postischemic anti-inflammatory effects of ethanol consumption were abolished by administration of a specific CGRP receptor antagonist [CGRP-(8-37)] or after sensory nerve neurotransmitter depletion using capsaicin administered 4 days before ethanol ingestion, which initially induces rapid release of CGRP from sensory nerves, thereby depleting stored neuropeptide. Administration of exogenous CGRP or induction of endogenous CGRP release by treatment with capsaicin 24 h before I/R mimicked the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Preconditioning with capsaicin 24 h before I/R was prevented by coincident treatment with CGRP-(8-37), while exogenous CGRP induced an anti-inflammatory phenotype in mice depleted of CGRP by capsaicin administration 4 days earlier. Our results indicate that the effect of antecedent ethanol ingestion to prevent postischemic LR and LA is initiated by a CGRP-dependent mechanism.  相似文献   

14.
Effects of yohimbine (YHMB, an alpha 2-antagonist) and desipramine (DMI, a neuronal uptake inhibitor) were compared on cardiac noradrenaline (NA) release either upon left ansa subclavia nerve stimulation during acute occlusion of the left anterior descending coronary artery (LAD) or upon subsequent LAD reperfusion without stimulation in anesthetized dogs. In control dogs, before LAD occlusion, coronary sinus (CS) NA output increased from 5.4 +/- 1.0 to 26.8 +/- 4.0 ng/min (p less than 0.05) upon stimulation (2 Hz, 30 s). The response to stimulation remained unchanged 25 min after LAD occlusion. During reperfusion 60 min after occlusion, the output of CS-NA and lactate increased from 6.1 +/- 0.8 to 51.3 +/- 19.4 ng/min (p less than 0.05) and from 2.7 +/- 0.5 to 6.7 +/- 1.3 mg/min (p less than 0.05), respectively. In dogs treated with YHMB, the stimulation-induced increase in NA output was potentiated at least fourfold (p less than 0.05) either before or during LAD occlusion, but not during reperfusion. In dogs receiving DMI, stimulation-induced CS-NA output was enhanced to a similar extent (approximately twofold, p less than 0.05) either before or during occlusion, while reperfusion-induced NA output was markedly potentiated by approximately ninefold (p less than 0.05). Maximum dP/dt of left ventricular pressure remained unchanged upon reperfusion in all groups. The total arrhythmic ratio in the drug-treated groups did not significantly differ from the ratio in control dogs upon either stimulation or reperfusion. The data suggest that an abrupt increase in NA output upon reperfusion may result from a washout of NA locally accumulated in the ischemic and (or) peri-ischemic region during the preceding occlusion period, and that NA thus released does not have substantial hemodynamic effects. The results indicate that in the presence of YHMB or DMI, the potentiated increase in NA release in response to either nerve stimulation during LAD occlusion or to reperfusion without stimulation did not aggravate ventricular arrhythmia, most probably owing to the antiarrhythmic properties of these substances.  相似文献   

15.
Mixed efficacy of neuroprotective drugs in clinical trials has led to the emergence of the approach of combination therapy in stroke. The present study was carried out to investigate the effect of the combination of melatonin (potent antioxidant) and meloxicam (preferential inhibitor of cyclooxygenase-2 enzyme) against a middle cerebral artery occlusion model of stroke in rats. Male Wistar rats in the weight range of 250-300 g were used. Rats were anesthetized using chloral hydrate (400 mg/kg i.p) and subjected to 2 h of transient middle cerebral artery occlusion. Melatonin was administered at a dose of 20 mg/kg i.p. four times: at the time of middle cerebral artery occlusion, 1.5 h after middle cerebral artery occlusion, at the time of reperfusion, and 1 h after reperfusion. Meloxicam (2.5 mg/kg) was administered 4 h after middle cerebral artery occlusion. Motor performance tests (grip test, foot fault test, rotarod performance test, spontaneous locomotor activity), markers of oxidative stress, and triphenyltetrazolium chloride staining were carried out 24 h after middle cerebral artery occlusion. A vehicle-treated group was run in parallel. It was observed that melatonin treatment improved the motor performance and significantly attenuated the levels of malondialdehyde (MDA) as compared with the middle cerebral artery occluded group. Meloxicam treatment at the dose used neither showed significant improvement on the motor performance nor decreased the levels of MDA significantly as compared with the middle cerebral artery occluded group. However, when the combination of the two drugs was used, better protection was observed as was evident by the significant decrease in the percent foot fault errors, the increase in the time spent on the rotarod, and the increase in the six-point neurological score and grip test score. There was also a significant decrease in the levels of MDA in the combination group. The results of the present study demonstrate that enhanced protection is observed with the use of a combination of melatonin plus meloxicam in the middle cerebral artery occlusion model of acute ischemic stroke in rats.  相似文献   

16.
This study was taken to evaluate the radioprotective effects of melatonin. Male adult albino mice were treated (intraperitoneal, i.p.) with 10 mg/kg melatonin either 1 h before or 1/2 h after exposure to 1.5 Gy of gamma-irradiation. Control, melatonin, irradiated and melatonin plus irradiation groups were sacrificed 24 h following treatment. The incidence of micronuclei (MN) in bone marrow cells was determined in all groups. The results show that melatonin caused a significant reduction in micronuclei polychromatic erythrocytes (MNPCE) when animals were treated with melatonin before and not after exposure to radiation. Mitotic and meiotic metaphases were prepared from spermatogonial and primary spermatocytes, respectively. Examination and analysis of metaphases showed no mutagenic effect of melatonin on chromosomal aberration (CA) frequency in spermatogonial chromosomes. Administration of one single dose of melatonin to animals before irradiation lowered total CA from 46 to 32%. However, no significant effect was observed when melatonin was given after irradiation. Similarly, the frequency of CA in meiotic metaphases decreased from 43.5% in the irradiated group to 31.5% in the irradiated group treated with melatonin 1 h before irradiation, but no change was observed when melatonin was administered after irradiation. The data obtained in this study suggest that melatonin administration confers protection against damage inflicted by radiation when given prior to exposure to irradiation and not after, and support the contention that melatonin radioprotection is achieved by its ability as a scavenger for free radicals generated by ionizing radiation.  相似文献   

17.
Administration of nitric oxide (NO) donors during ischemia and reperfusion protects from myocardial injury. However, whether administration of an NO donor during a brief period prior to ischemia protects the myocardium and the endothelium against ischemia-reperfusion injury in vivo is unknown. To study this possibility anesthetized pigs were subjected to 45-min ligation of the left anterior descending coronary artery (LAD) followed by 4h of reperfusion. In initial dose-finding experiments, vehicle or three different doses of the NO donor S-nitroso-N-acetyl-D,L-penicillamin (SNAP; 0.1; 0.5; 2.5 micromol) were infused into the LAD for 3 min starting 13 min during ischemia. Only the 0.5 micromol dose of SNAP reduced infarct size (from 85+/-3% of the area at risk in the vehicle group to 63+/-3% in the SNAP-treated group; p<0.01). There were no significant differences in hemodynamics in the vehicle and SNAP groups during ischemia-reperfusion. Endothelium-dependent dilatation of coronary microvasculature induced by substance P was larger in the SNAP group than in the vehicle group. Myeloperoxidase activity was lower in the ischemic/reperfused myocardial area of pigs given SNAP (4.97+/-0.61 U/g) than in vehicle-treated pigs (8.45+/-0.25 U/g; p<0.05). It is concluded that intracoronary administration of the NO donor SNAP for a brief period before ischemia reduces infarct size, attenuates neutrophil accumulation, and improves endothelial function. These results suggest that NO exerts a classic preconditioning-like protection against ischemia-reperfusion injury in vivo in a narrow concentration range.  相似文献   

18.
Wang C  Pei A  Chen J  Yu H  Sun ML  Liu CF  Xu X 《Journal of neurochemistry》2012,121(6):1007-1013
Previous studies have demonstrated that a natural coumarin compound esculetin (Esc) possesses antioxidant, anti-tumor, and anti-inflammation activities and rescues cultured primary neurons from NMDA toxicity. In this study, we investigated the neuroprotective effects of Esc on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion model in mice. Esc (20 μg) was administered intracerebroventricularly at 30 min before ischemia. We found that Esc significantly reduced infarct volume and decreased neurological deficit scores after 75 min of ischemia and 24 h of reperfusion. Post-treatment of Esc still provided neuroprotection even when Esc was administered after 4 h of reperfusion. Our data also indicated that intraperitoneal administration of Esc showed protective effects on cerebral I/R injury in a dose-dependent manner. We further explored the protective mechanisms of Esc on cerebral I/R injury and found that Esc decreased cleaved caspase 3 level, a marker of apoptosis. Finally, our data demonstrated that Esc exerted its anti-apoptotic activity by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax, two apoptosis-related proteins. Because of its clinical use as an anticoagulant and its safety profile, Esc may have a therapeutic potential for the treatment of stroke in the future clinical trials.  相似文献   

19.
The aim of the present study is to investigate the onset and the intensity of arrhythmias in anaesthetized rats as a function of time under a standardized experimental condition, which is composed of 30 min occlusion and 60 min reperfusion. Local bred rats (250-350 g) housed in a 12-h light-dark cycle (lights on at 09.00 h, lights off at 21.00 h) were anaesthetized by sodium thiopentone (60 mg kg-1 i.p.) and left anterior descending coronary artery ligation method using 6/0 braided silk ligature was used to induce 30 min occlusion and 60-min reperfusion. Animals were randomly allocated into three groups to exposure to 30-min occlusion at 9.00 h and 60 min reperfusion at 9:30 h (Group I, n = 6); to 30 min occlusion at 15.00 h and 60 min reperfusion at 15:30 h (Group II, n = 6); and to 30 min occlusion at 21.00 h and 60 min reperfusion at 21.30 h (Group III, n = 6). ECG and haemodynamic parameters were recorded throughout the experiments. The onset of ventricular ectopic beats (VEBs), number of VEBs, incidences of ventricular tachycardia (VT) and ventricular fibrillation (VF) during the periods of occlusion-reperfusion were analysed. Total VF incidence during occlusion were lower than the VT incidence in all groups. Either VT or VF incidences during reperfusion showed same profiles in all groups but VT incidence was 2-fold higher than VF. Time-dependent application of occlusion-reperfusion induced by coronary artery ligation method in the anaesthetized rats did not result in a variation in the onset and the intensity of arrhythmias. The duration of the experimental ischaemia was the principal factor, which determines the time of onset and intensity of the occlusion-reperfusion arrhythmias.  相似文献   

20.
Protein kinase Cepsilon (PKCepsilon) plays a central role in ischemic preconditioning (IP) in mice and rabbits, and activated PKCepsilon colocalizes with and phosphorylates connexin43 (Cx43) in rats and humans. Whether or not Cx43 contributes to the mechanism(s) of IP in vivo is yet unknown. Therefore, wild-type (n = 8) and heterozygous Cx43-deficient mice (n = 8) were subjected to 30 min occlusion and 120 min reperfusion of the left anterior descending coronary artery. IP was induced by one cycle of 5 min occlusion and 10 min reperfusion (n = 8/8 mice) before the sustained occlusion. Infarct size was reduced by IP in wild-type mice [11.3 +/- 3.4% vs. 23.7 +/- 7.2% of the left ventricle (LV), P < 0.05] but not in Cx43-deficient mice (26.0 +/- 6.0% vs. 25.1 +/- 3.8% of LV). Also, three cycles of 5 min occlusion and 10 min reperfusion (n = 5) did not induce protection in Cx43-deficient mice (27.6 +/- 5.5 % of LV). Thus Cx43 contributes to the protection of IP in mice in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号