首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

2.
Henry M. Page 《Oecologia》1995,104(2):181-188
To provide insight into the importance of the salt-marsh ecotone as a sink for inorganic nitrogen in perched groundwater, measurements were made of the natural abundance of 15N in dissolved NO3-N and NH4-N and in the salt-marsh halophyte, Salicornia virginica, along an environmental gradient from agricultural land into a salt-marsh. The increase in the natural abundance of 15N (expressed by convention as 15N) of NO3-N, accompanied by the decrease in NO3-N (and total dissolved inorganic N, DIN) concentration along the gradient, suggested that the salt-marsh ecotone is a site of transformation, most likely through denitrification, of inorganic nitrogen in groundwater. 15N enrichment in S. virginica (and the parasitic herb, Cuscuta salina), along the tidal marsh boundary, relative to high and middle marsh locations, indicated the retention of groundwater nitrogen as vegetative biomass. The correlation between 15N Salicornia and 15NNH4 suggested a preference for NH4-N over NO3-N during uptake by this plant. Groundwater inputs enhanced the standing crop, above-ground productivity, and nitrogen content of S. virginica but the ralative effects of pore water salinity and DIN concentration on these parameters were not determined. 15N enrichment of marsh plants by groundwater DIN inputs could prove useful in tracing the fate of these inputs in the marsh food web.  相似文献   

3.
The extent of transfer of fixed N between N2-fixing and non-N2-fixing plant species is largely unknown in successional studies. In order to redress this deficiency at a locale intensively studied ecologically, leaf tissue samples were collected from actinorhizal N2-fixing (Alnus, Shepherdia, and Dryas) and two non-N2-fixing (Salix) woody species within research plots located along a chronosequence of deglaciated fjord in Glacier Bay National Park, Alaska. The tissue samples were analyzed for 15N content, and the resulting data analyzed for trends in plant tissue N. Among the non-N2-fixing Salix species, 15N values increased from the most recently deglaciated sites to converge with the temporally more-stable values for the symbiotic N2-fixing species on sites at about 40 years after deglaciation. The lower 15N values of sequestered N in plant tissues suggested that N derived from N2-fixing plants accounts for the major portion of N in associated plants up to 40 years after deglaciation. The 15N isotopic data also suggested that Shepherdia canadensis depends least on soil N, D. drummondii the most, and A. viridis ssp. sinuata somewhere between those two species. The presence of a sere dominated by dense thickets of A. viridis ssp. sinuata at the convergence of 15N values for the N2-fixing and non-N2-fixing species indicated that this species is most responsible for accumulation of fixed N in soil at Glacier Bay. This paper is dedicated to the memory of Steven J. Kohls who died prior to publication of this research.  相似文献   

4.
Discaria trinervis and Discaria americana are native actinorhizal plants in Argentina. Discaria seedlings growing in N-free liquid culture, inoculated with dry soils, developed Frankia colonies in the rhizosphere. The occurrence of hyphae, vesicles and sporangia characteristic of Frankia are described in these colonies. The presence of sporangia of Frankia has previously neither been reported in the genus Discaria, nor in the other genera of the tribe Colletieae inside root nodules or outside roots. The infective capacity of the colonies has been demonstrated.  相似文献   

5.
Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when , not , was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.  相似文献   

6.
The leaves and nodules from the shrub and tree legumes, particularly, Aeschynomene spp., Sesbania spp., Mimosa spp. and Leucaena spp., and Casuarina spp. and the leaves from neighbouring non-fixing plants were analyzed for their natural abundances of 15N ( 15N).The 15N in the leaves of non-fixing plants was +5.9% on average, whereas those from shrub legumes and Casuarina spp. were lower and close to the values of atmospheric N2, suggesting the large contribution of N2 fixation as the N source in these plants. The 15N values of the leaves from tree legumes except for Leucaena spp. were between the shrub legumes and non-fixing plants, which suggests that the fractional contribution of fixed N2 in tree legumes may be smaller than that in the shrub legumes. Casuarina spp. was highly dependent on N2 fixation. The 15N values of the nodules from most of the shrub legumes investigated were higher than those of the leaves.  相似文献   

7.
Summary Evidence of root nodulation and N2 fixation byParasponia parviflora Miq. found earlier by Akkermanset al. 1, 2 was confirmed, although with a lower value for N2 fixation. In contrast to the above-mentioned investigation, theParasponia trees examined in the present study were growing under natural conditions.The evidence giving by Akkermanset al. 1, 2, that Trinick's Trema is aParasponia species was confirmed by cytological and structural studies of Parasponia root nodules, which resembled closely the Trema root nodules of Trinick19. Moreover, evidence was obtained thatTrema cannabina Lour. growing in natural habitat on Java and two imported, hitherto unexamined,Trema species (T. micrantha andT. guineensis) bore no root nodules.Isolates fromParasponia parviflora root nodules produced effective root nodules both in sterile Parasponia seedlings and sterileVigna unguiculata (cowpea) andMacroptilium atropurpureum plants confirming their identity as Rhizobium.  相似文献   

8.
Summary The relative nitrogen fixation efficiencies (RE 1-[H2 evolved÷C2H2 reduced]·100) of four mesquite (Prosopis glandulosa var.torreyana) rhizobia (Strains WR 1001, WR 1002, L5, L9) and a cowpea rhizobia (Strain 176A32) on mesquite were evaluated in a glasshouse experiment. Plant yield, shoot N accumulation, and the natural15N abundance (15N) of nodule tissue were determined. Strain WR 1002 failed to nodulate mesquite and strain L5 produced ineffective nodules. Among the three effective strains (WR 1001, L9, 176A32) the cowpea strain (176A32) and strain L9 had significantly higher RE than strain WR 1001. Differences in RE, however, were not accompanied by significantly higher plant yield and shoot N accumulation. The difference in15N abundance between foliar tissue and nodules (nodules minus leaves) was 0.47 15N for the ineffective L5 nodules, while for the effective WR 1001, L9, and 176A32 nodules, respectively, this difference was 8.35, 7.81, and 8.35 15N. This indicates a similar relationship between N2-fixing effectiveness and natural15N enrichment of nodules that was previously observed in soybeans (Glycine max, L. Merr.). Strains WR 1001 and L9 produced elongate, indeterminate nodules typical for mesquite. The ineffective L5 nodules had few infected cells and an abundance of cortical amyloplasts. Mesquite nodules produced by the cowpea strain were spherical and were somewhat more similar in internal morphology to determinate nodules typical of cowpea than indeterminate nodules normally associated with mesquite.  相似文献   

9.
P.-O. Lundquist 《Plant and Soil》2005,273(1-2):235-244
The carbon cost of nitrogenase activity was investigated to determine symbiotic efficiency of the actinorhizal root nodule symbiosis between the woody perennial Alnus incana and the soil bacterium Frankia. Respiration (CO2 production) and nitrogenase activity (H2 production) by intact nodulated root systems were continuously recorded in short-term assays in an open-flow gas exchange system. The assays were conducted in N2:O2, thus under N2-fixing conditions, in all experiments except for one. This avoided the declines in nitrogenase activity and respiration due to N2 deprivation that occur in acetylene reduction assays and during extended Ar:O2 exposures in H2 assays. Two approaches were used: (i) direct estimation of root and nodule respiration by removing nodules, and (ii) decreasing the partial pressure of O2 from 21 to 15% to use the strong relationship between respiration and nitrogenase activity to calculate CO2/H2. The electron allocation of nitrogenase was determined to be 0.6 and used to convert the results into moles of CO2 produced per 2e transferred by nitrogenase to reduction of N2. The results ranged from 2.6 to 3.4mol CO2 produced per 2e. Carbon cost expressed as gC produced per gN reduced ranged from 4.5 to 5.8. The result for this actinorhizal tree symbiosis is in the low range of estimates for N2-fixing actinorhizal symbioses and crop legumes. Methodology and comparisons of root nodule physiology among actinorhizal and legume plants are discussed.  相似文献   

10.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   

11.
New techniques are presented on the use of 15N to mark insects. 15N, a stable isotope of nitrogen, was enriched above natural abundance in plant and insect tissues. Two laboratory studies demonstrated that enriched 15N-concentrations could be tracked from plant to insect using mass spectrometry. In the first study, adult Cotesia plutellae (Kurdjimov) (Hymenoptera: Braconidae) and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) were allowed to feed at the flowers of rapid-cycling Chinese cabbage plants that had been fertilized with 15N-enriched potassium nitrate (KNO3-15NO3). Both insect groups were found to have significantly elevated 15N levels after visiting the flowers of the 15N-enriched plants for 48 hours. In the second study, 15N-enriched bean plant (Phaseolus vulgaris L.) tissue was incorporated into an insect diet and fed to navel orangeworms, Amyelois transitella (Walker) (Lepidoptera: Pyralidae). When the navel orangeworm larvae were 4th instars, they were removed from the diet and exposed to the parasitoid, Goniozus legneri Gordh (Hymenoptera: Bethylidae). Results indicated that the enriched 15N-concentration of the bean plants was transferred to the navel orangeworms and, subsequently, to the parasitoids. This work may provide useful techniques to help establish whether agriculturally important entomophaga visiting 15N-enriched flowers or parasitizing enriched sentinel larvae in the field can be effectively marked with 15N.  相似文献   

12.
Summary Isotopic15N2 experiments confirmed nitrogen fixation inParasponia parviflora. The conversion ratio C2H4/N2 was 6.7 under the experimental conditions employed. Measurements of the δ15N in leaves of Parasponia and Trema showed on the basis of these determinations thatParasponia parviflora possesses N2-fixing capacity and can be distinguished in this respect from the non-nitrogen-fixingTrema cannabina tested by the same method. Therefore, δ15N can be used to monitor N2 fixation in natural ecosystems. Hydrogen evolution and the relative efficiency of N2 fixation in this relation have been determined. DetachedParasponia parviflora root nodules grown in soil and tested in an argon/oxygen atmosphere produced appr. 4 μmol H2.h−1.g−1 fresh weight root nodules. The relative efficiency of hydrogen utilization as measured in argon, air, and in the presence of C2H2 10% (v/v) was for both equations used for to express this efficiency 0.96 and 0.97, respectively. This indicates that Parasponia like the root nodules of some actinorhizal symbioses (Alnus, Myrica, Elaeagnus) and some tropical legumes (Vigna sinensis) has evolved mechanisms of minimizing net hydrogen production in air, thus increasing the efficiency of electron transfer to nitrogen. The oxygen relation of nitrogen fixation (C2H2) inParasponia parviflora root nodules was determined. The nitrogenase activity of Parasponia root nodules increased at increasing oxygen concentrations up till c. 40% O2. At oxygen levels above 40% O2, the nitrogenase activity of the root nodules was nil or very erratic suggesting that at these oxygen levels the nitrogenase is not longer protected against the harmful effect of oxygen. In this respect Parasponia root nodules differ from actinorhizal root nodules in other nonlegumes, where optimal nitrogenase activity was observed in the range of 12–25% oxygen. Respiration experiments with Parasponia root nodules showed that in the range 10, 20, and 40% oxygen, the respiration rate (CO2 evolution) increased concomitantly with an increase of the acetylene reduction rate. The CO2/C2H4 values obtained varied between 8.1 and 19.2, being therefore 2–3 times higher than similar estimations in some actinorhizal and legume root nodules. The respiratory quotient (RQ) of detachedParasponia parviflora root nodules was in air initially approximately 2.0, but this value dropped to about 1.0 in a 3-hours period.  相似文献   

13.
15N natural abundances of soil total N, roots and mycorrhizas were studied in surface soil profiles in coniferous and broadleaved forests along a transect from central to northern Europe. Under conditions of N limitation in Sweden, there was an increase in 15N of soil total N of up to 9% from the uppermost horizon of the organic mor layer down to the upper 0–5 cm of the mineral soil. The 15N of roots was only slightly lower than that of soil total N in the upper organic horizon, but further down roots were up to 5% depleted under such conditions. In experimentally N-enriched forest in Sweden, i.e. in plots which have received an average of c. 100 kg N ha–1 year–1 for 20 years and which retain less than 50% of this added N in the stand and the soil down to 20 cm depth, and in some forests in central Europe, the increase in 15N with depth in soil total N was smaller. An increase in 15N of the surface soil was even observed on experimentally N-enriched plots, although other data suggest that the N fertilizer added was depleted in15N. In such cases roots could be enriched in15N relative to soil total N, suggesting that labelling of the surface soil is via the pathway: — available pools of N-plant N-litter N. Under N-limiting conditions roots of different species sampled from the same soil horizon showed similar 15N. By contrast, in experimentally N-enriched forest 15N of roots increased in the sequence: ericaceous dwarf shrubs15N enriched compounds in fungal material, which could contribute to explain the observed 15N profiles if fungal material is enriched, because it is a precursor of stable organic matter and recalcitrant N. This could act in addition to the previous explanation of the isotopically lighter soil surface in forests: plant uptake of 15N-depleted N and its redeposition onto the soil surface by litter-fall.  相似文献   

14.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

15.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

16.
A new technique is proposed for measuring 15N isotope fractionation during N fixation that obviates some of the possible disadvantages of existing methods. Accurate calculation of N fixation by legumes using the 15N natural abundance technique requires a value for the isotopic composition of fixed N as an input. Isotopic fractionation in fixed N in legumes has usually been measured using N- free solution culture but results can vary with Rhizobium strain and growth conditions. The proposed method avoids these problems and can be used as an integral part of a field experiment for evaluating N fixation.The technique is essentially a process of adjusting values of 15 N for fixed N until % N fixation calculated by the 15N natural abundance method best matches % N fixation estimated by the 15N enrichment method. The use of high % N fixation values improves the sensitivity and reliability of the method.A field evaluation of this comparison technique using chickpea (Cicer arietinum L.) provided a 15N isotope fractionation factor (–2.37) for fixed N close to that obtained by N-free solution culture methods (–2.10). The availability of these two independent techniques allowed mutual corroboration of estimates of 15N isotope fractionation during N fixation.
  相似文献   

17.
The partitioning of nitrogen deposition among soil, litter, below- and above-ground biomass of trees and understory vegetation was investigated in a 15-year-old Picea abies (L.) Karst. plantation in the Fichtelgebirge, Germany, by labeling with 62 mg of15N tracer per square meter in March 1991. Ammonium and nitrate depositions were simulated on five plots each, by labeling with either15N-NH4 + or15N-NO3 , and the15N pulse was followed during two successive growing seasons (1991 and 1992). Total recovery rates of the15N tracer in the entire stand ranged between 93 and 102% for both nitrogen forms in 1991, and 82% in June 1992. 5 N ratios increased rapidly in all compartments of the ecosystem. Roots and soils (to 65 cm depth) showed significant15N enrichments for both15N-treatments compared to reference plots. Newly grown spruce tissues were more enriched than older ones, but the most enriched 15N values were found in the understory vegetation. Although spruce trees were a much larger pool (1860 g biomass/m2) than understory vegetation (Vaccinium myrtillus 333 g/m2, Calluna vulgaris 142 g/m2, Deschampsia flexuosa 22 g/m2), the ericaceous shrubs and the perennial grass were a much greater sink for the15N label. Eight months after labeling, 9% of the ammonium and 15% of the nitrate label were found in the understory. P.abies retained only 3% of the15N-ammonium and 7% of the15N-nitrate. The main sink for both15N tracers was the soil, where 87% of the ammonium and 79% of the nitrate tracer were found. The organic soil horizon (5-0 cm depth) contained 63% of the15N-ammonium and 46% of the15N -nitrate suggesting strong immobilization by microorganisms of both N forms. Eight months after tracer application, about 16% of both15N-tracers was found below 25 cm soil depth. This 16% corresponds well to a 20% decrease in the recovery of both15N tracers after 15 months and indicates a total loss out of the ecosystem. Highly enriched 15N values were found in fruit bodies of fungi growing in reference lots (no15N addition), although soils did not show increased 15N ratios. No transfer of15N-tracer between fungi and spruce or understory vegetation was apparent yet.  相似文献   

18.
In this study, we examined the use of the 15N natural abundance method to quantify the percentage N derived from fixation of atmospheric N2 in honeybush (Cyclopia spp.) shrubs and trees in the fynbos, South Africa. Non-fixing shrubs and trees of similar phenology to the Cyclopia species were chosen as reference plants. These reference plants were selected to cover a range of mycorrhizal associations (ericoid mycorrhizal, arbuscular mycorrhizal and non-mycorrhizal). Isotopic analysis revealed a wide range of foliar 15N values for the reference plants, including many very negative values. The marked differences in 15N values were defined by the mycorrhizal status of the reference plant species, with the ericoid and arbuscular mycorrhizal plants showing lower foliar 15N values relative to their non-mycorrhizal counterparts. In contrast, the 15N values of the N2-fixing Cyclopia species were uniformly clustered around zero, from –0.11 to –1.43. These findings are consistent with the observation that mycorrhizal fungi discriminate against the heavier 15N isotope during transfer of N from the fungus to the host plant, leaving the latter depleted in 15N (i.e. with a more negative 15N value). However, a major assumption of the 15N natural abundance method for estimating N2 fixation is that both legume and reference plant should have the same level of fractionation associated with N uptake. But, because mycorrhizal associations may strongly affect the level of fractionation during N uptake and transfer, the test legume should belong to the same mycorrhizal group as the chosen reference plant species. As shown in this study, if the mycorrhizal status of the legume and the reference plant differs, or cannot be assessed, then the 15N natural abundance technique cannot be used to quantitatively estimate N2 fixation.  相似文献   

19.
In this paper we discuss the use of isotope ratios as indicators of organic production. Few studies have investigated the influence of plant nutrition on the isotopic signatures of plants. As plant nutrition is often significantly different between integrated and organic production systems the isotope ratios in the plants may reflect this. Plant samples from a 2-year field-experiment were analyzed for 15N, 13C and 34S content of the bulk-material and 18O-content of the leaf water. In this experiment cabbages (Brassica oleracea v. capitata f. alba cv. Rolly), onions (Allium cepa cv. Alisa Craig), lettuces (Lactuca sativa v. capitata cv. Ponchito) and Chinese cabbage (Brassica pekinesis cv. Parkin) were cultivated according to good agricultural practices for integrated and organic production. No differences in the δ 34S and δ 18O values of the plants grown under the two production systems were observed. The organically produced vegetables were significantly enriched in 15N and depleted in 13C compared to those grown under the integrated system.  相似文献   

20.
K. D. Subedi  B. L. Ma 《Plant and Soil》2005,273(1-2):189-202
Little information exists on the pattern of nitrogen (N) uptake, remobilization and N use efficiency (NUE) in Leafy and stay-green (SG) maize (Zea mays L.) genotypes. A pot experiment was conducted under controlled nutrition and growing conditions to determine the response of Leafy and SG maize genotypes to different levels of N-deficiency and timing of N supply. Three contrasting maize hybrids, Pioneer 3905 (a conventional hybrid with moderate SG characteristics), Pioneer 39F06 Bt (with a high score of SG trait) and Maizex LF850-RR (with a Leafy trait) were grown in 6 L plastic pots. Five different N treatments [no supply of N until V8 (N1), no supply of N after V8 (N2), no supply of N after silking (N3), no supply of N beyond 3 weeks after silking (N4), and continuous N supply from emergence to physiological maturity (N5; standard check)] were imposed through modified Hoagland solution applied manually. Labeled 15N of 5% 15N2–NH4NO3fertilizer was applied at 3 g per pot at the start of each schedule N treatment. Total amounts of N applied in different treatments were 3.13, 1.32, 1.90, 2.63 and 3.40 g, respectively in N1, N2, N3, N4 and N5. Dry matter, N concentration, 15N (atom% enrichment) and NUE were determined in roots, stalk, leaves and grains at crop maturity. The three contrasting hybrids did not differ in grain yield, total N acquisition, partitioning of 15N and NUE. Restriction of N supply until V8, and from V8 to physiological maturity significantly reduced grain yield and N-uptake in all hybrids. Irrespective of the level of N-deficiency in plant and timing when the labeled fertilizer was applied, the amount of 15N recovered in the matured plant was the same in all N treatments. It has been evident that maize continued to take up N beyond 3 weeks after silking and the later N was applied during the development, the higher proportion of it was partitioned to grains. Of the total 15N uptake, 78% was partitioned to kernels in the N4 treatment compared to only 61% in the control. Our data showed no evidence of differential N uptake, remobilization and NUE in the SG or Leafy hybrids tested, but the timing of N application and level of N-deficiency in plant significantly influenced N uptake, remobilization and N-dynamics in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号