首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the factors associated with the high prevalence of upper extremity musculoskeletal disorders, such as carpal tunnel syndrome, among dental practitioners is the repeated high pinch force applied during periodontal scaling. The goal of this study was to determine the relationship between the pinch force applied during periodontal scaling and the forces generated at the tip of the tool. A linear biomechanical model that incorporated tool reaction forces and a calculated safety margin was created to predict the pinch force applied by experienced and inexperienced dentists during periodontal scaling. Six dentists and six dental students used an instrumented scaling tool while performing periodontal scaling on patients. Thumb pinch force was measured by a pressure sensor, while the forces developed at the instrument tip were measured by a six-axis load cell. A biomechanical model was used to calculate a safety factor and to predict the applied pinch force. For experienced dentists, the model was moderately successful in predicting pinch force (R(2)=0.59). For inexperienced dentists, the model failed to predict peak pinch force (R(2)=0.01). The mean safety margin was higher for inexperienced (4.88+/-1.58) than experienced (3.35+/-0.55) dentists, suggesting that students apply excessive force during scaling.  相似文献   

2.
A new method for adjusting the tool rake and flank angles by changing the position of the tools was used to explore the behaviour of wear using MD simulation. In this paper, a new improved tool was used and found to have lower wear compared to conventional tools. Simulations under the same cutting conditions were carried out using a tool swinging to six different rake angles of six different adjustment angles. Further analysis of the influence of different adjustment angles on the wear behaviour of the tool by cutting force, friction coefficient, temperature, radial distribution function and wear rate was conducted. The highest normal force was observed with the tool swung to ?15°, and the tangential force did not produce any significant changes. The friction coefficients were also not observed as a linear change with the increasing angle of adjustment. At the same time, the particularities and differences at ?15° were illustrated, from the most intuitive tool flank wear images. Finally, the causes of this phenomenon were further explained in terms of temperature and radial distribution function and the correctness of this phenomenon was proved, which is different from previous researches.  相似文献   

3.
The forces during the kicking phase in Nordic diagonal stride skiing are described by differential equations and the results are compared with experiments. The difference between static and dynamic friction, interacting with characteristics of the skier such as weight, velocity and the kicking force's angle with the terrain, are essential for high-velocity diagonal striding. Analytical results for relationships between glide length, friction and kicking force are shown. Aerodynamic drag and gravity are accounted for. A propulsion force based on the Hill (1970) equation for muscle contraction velocity and activation is constructed. The model shows a feasible tool for studying the effects of ski stiffness, the kicking force and the amount of waxing during diagonal stride skiing.  相似文献   

4.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

5.
Orthodontists, like others (Engel, P.A. (1976) Impact Wear of Materials. Elsevier Scientific, New York.), often equate the smoothness of surfaces with the absence of friction. To investigate whether the surface roughness of opposing materials influence the coefficients of friction and ultimately the movement of teeth, arch wires were slid between contact flats to simulate orthodontic arch wire-bracket appliances. From laser specular reflectance measurements, the RMS surface roughness of these arch wires varied from 0.04 microns for stainless steel to 0.23 microns for nickel titanium. Using the same technique, the roughnesses of the contact flats varied from 0.03 microns for the 1 micron lapped stainless steel, to 0.26 microns for the as-received alumina. After each of the arch wire-contact flat couples was placed in a friction tester, fifteen normal forces were systemically applied at 34 degrees C. From plots of the static and kinetic frictional forces vs the normal forces, dry coefficients of friction was obtained that were greater than those reported in the dental literature. The all-stainless steel couples had lower kinetic coefficients (0.120-0.148) than the stainless steel-polycrystalline alumina couple (0.187). When pressed against the various flats, the beta-titanium arch wire (RMS = 0.14 microns) had the highest coefficients of friction (0.445-0.658), although the nickel titanium arch wire was the roughest (RMS = 0.23 microns). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) verified that mass transfer of the beta-titanium arch wire occurred by adhesion onto the stainless steel flats or by abrasion from the sharply faceted polycrystalline alumina flats.  相似文献   

6.
A new approach to estimate normal and tangential contact parameters in the foot-ground contact during human gait was proposed. A correct estimation of the contact parameters would be very important in the resolution of predictive forward dynamic problems. The normal contact forces have been well estimated in the literature. But accurate estimation of tangential forces has not been reached yet. This work proposed a new procedure to accurately estimate friction forces. The approach has been based on the consideration of the modulus of the tangential force instead of its components. This modulus was introduced together with the modulus of the normal contact force and its two associated moments in an optimization algorithm to fit the contact forces provided by the model to the experimental data obtained with a force plate. An inverse dynamics problem was solved as a step previous to the optimization algorithm. The results showed that both the normal and tangential forces and the moments in the horizontal plane were in agreement with the experimental measurements. This work also analyzed the influence on the results of the friction law. The results obtained with the general friction law, which considered dry (static and dynamic) and viscous friction, were compared with results provided by simpler laws. The analysis of the components of the friction forces pointed out the importance of the Stribeck component in the resultant force instead of the viscous friction which played a minimal role. But for modelling the stick-slip transition, the implementation of a general friction law is necessary.  相似文献   

7.
This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (p<0.05; for both 50% and maximum grip efforts). Consequently, increased friction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation.  相似文献   

8.
The coefficient of static friction for pig femora following an osteotomy has been determined in vitro. It was found that the coefficient had a value of 0.46 ± 0.05, and that this was independent of the reduction force applied to the osteotomy site, provided there was good anatomical reduction. When the osteotomy was not anatomically reduced, the coefficient of friction varied in a linear manner with the applied reduction force.  相似文献   

9.
The fact that humans can execute accurate movements and generate precise muscle forces is very important for hand function. Target-tracking tasks or target-matching tasks are often executed under combined visual and somatosensory feedback. When visual feedback is removed, subjects have to depend on their perception of force. The objective of the present study was to estimate the effects of aging on the perception of a pinch force produced by the thumb and index finger. In a first set of trials, young (n = 12, age = 25.3 +/- 2.4 years) and elderly (n = 12, age = 71.5 +/- 3.3 years) healthy individuals were asked to reproduce pinch forces which were equivalent to 5%, 20%, and 40% of their maximal pinch force (MPF). Prior to the execution of these trials, the subjects were familiarized with the force levels by matching targets displayed on a screen. They were then asked to reproduce each of these forces without any visual or verbal feedback. The results showed a larger error in the reproduced force for the elderly subjects when compared with the young adults. However, this larger error was mainly due to an initial overshoot in the force to be reproduced, followed by a gradual decrease towards the appropriate force. This transient overshoot was rarely seen in the performance of the younger subjects. In a second set of trials, the same subjects were asked to produce a pinch force of 5%, 20%, and 40% of MPF with 1 hand using visual feedback. They were also instructed to simultaneously apply a comparable pinch force with the other hand (without any feedback). For both young and older adults, the pinch forces produced by the 2 hands were the same. In addition, in both blocks of trials, hand dominance had no effects on the performance for all subjects. These results suggest that normal aging affects the production of force based on sensorimotor memory rather more than it affects comparative outputs from central descending commands.  相似文献   

10.
A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.  相似文献   

11.
The objective of this study was to explore the utility of nitrile gloves as a replacement for latex surgical gloves in recovering bacteria from the hands. Two types of nitrile gloves were compared to latex gloves using the parallel streak method. Streaks of Klebsiella pneumoniae and Staphylococcus aureus were made on tryptic soy agar plates, and the zones of inhibition were measured around pieces of glove material placed on the plates. Latex gloves produced a mean zone of inhibition of 0.28 mm, compared to 0.002 mm for nitrile gloves (p<.001). While the parallel streak method is not intended as a quantitative estimate of antimicrobial properties, these results suggest that nitrile may be a viable alternative to latex in glove juice sampling methods, since nitrile avoids the risk of latex exposure.  相似文献   

12.
水曲柳和落叶松人工林根系分解与养分释放   总被引:12,自引:1,他引:11  
采用埋袋法对水曲柳和落叶松粗根(5~10 mm)、中根(2~5 mm)、细根(<2 mm)的分解速率及其养分释放进行了为期2年的研究.结果表明,水曲柳粗根、中根和细根年分解系数分别为0.3649、0.4381和0.2720,落叶松依次分别为0.1967、0.1955和0.2464.通过养分分析发现,根系分解过程释放大量C和养分.分解150 d后,两树种所有级别根系的可溶性糖释放均超过90%.水曲柳粗根和中根K的释放均在40%左右,细根K的释放为71%,落叶松所有级别的根系K的释放均在95%以上.在根系分解第2年,两树种粗根和中根N的释放在50%左右波动,P在40%左右波动,两树种细根N和P的释放均达到60%.因此,根系分解在C和养分循环中起重要作用,如果将其忽略,土壤有机质和养分元素的循环将会被严重低估.  相似文献   

13.
Effect of initial interference fit on pull-out strength in cementless fixation between bovine tibia and smooth stainless steel post was investigated in this study.Compressive behavior of bovine spongious bone was studied using mechanical testing in order to evaluate the elastic-plastic properties in different regions of the proximal tibia.Friction tests were carried out in the aim to evaluate the friction behavior of the contact between bovine spongious bone and stainless steel.A cylindrical stainless steel post inserted in a pre-drilled bovine tibia with an initial interference fit was taken as an in vitro model to assess the contribution of post fixation to the initial stability of the Total Knee Arthroplasty (TKA) tibial component.Pull-out experiments were carried out for different initial interference fits.Finite Element Models (FEM) using local elastic-plastic properties of the bovine bone were developed for the analysis of the experimental ultimate pull-out force results.At the post/bone interface,Coulomb friction was considered in the FEM calculations with pressure-dependent friction coefficient.It was found that the FEM results of the ultimate force are in good agreement with the experimental results.The analysis of the FEM interfacial stresses indicates that the micro-slip initiation depends on the local bone properties.  相似文献   

14.
Effect of wearing gloves on timely muscle reaction to stabilize handle perturbation was investigated. Thirteen adults gripped a horizontal overhead handle to which an upward force was applied at a random time. Muscle reaction time, integrated EMGs for eight muscles, and handle displacement were compared among three glove conditions affecting the coefficient of friction (COF = 0.32, 0.50, and 0.74 for the polyester glove, bare hand, and latex glove, respectively). Lower COF increased the integrated EMGs and handle displacement until stabilization of the perturbed handle. The low-friction glove resulted in 16% (p = .01) greater muscular effort and 20% (p = .002) greater handle displacement, compared to the high-friction glove. Muscle reaction time was not influenced by glove condition. Cutaneous sensation and reflex eliciting forearm muscle activity appear to play an important role in detecting and responding to the perturbation initially, while the forearm and latissimus dorsi muscles primarily contribute to stabilizing the perturbed handle compared to other shoulder and upper arm muscles. Therefore, low-friction gloves, cutaneous sensory dysfunction, and weakened forearm and latissimus dorsi muscles may jeopardize persons’ ability to stabilize a grip of a handle after perturbation.  相似文献   

15.
The forces and friction between cellulose spheres have been measured in the absence and presence of xyloglucan using an atomic force microscope. The forces between cellulose are monotonically repulsive with negligible adhesion after contact is achieved. The friction coefficient is observed to be unusually high in comparison with other nanotribological systems. We have confirmed that xyloglucan adsorbs strongly to cellulose, which results in a much stronger adhesion, which is dependent on the time the surfaces are in contact. Xyloglucan also increases the repulsion on approach of the cellulose surfaces, and the friction is markedly reduced. The apparently incompatible observations of decreased friction in combination with increased adhesion fulfills many of the necessary criteria for a papermaking additive.  相似文献   

16.
Many insects possess smooth adhesive pads on their legs, which adhere by thin films of a two-phasic secretion. To understand the function of such fluid-based adhesive systems, we simultaneously measured adhesion, friction and contact area in single pads of stick insects (Carausius morosus). Shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity-effect of a continuous fluid film. However, measurements of the remaining force 2 min after a sliding movement show that adhesive pads can sustain considerable static friction. Repeated sliding movements and multiple consecutive pull-offs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid. In contrast, pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction which is biologically important to prevent sliding is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate.  相似文献   

17.
Host plant surfaces of the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), vary in microtopography, which can affect its attachment, locomotion, and oviposition behaviour. This study was performed to investigate the effect of surface roughness on the attachment ability of adult insects. Using a centrifugal force device, friction forces of both sexes were assessed on six epoxy resin substrates differing only in the dimensions of their surface asperities, ranging from 0 μm to 12 μm. Surface topography significantly affected friction forces. Maximal force was measured on the smooth substrate whereas minimal force was assessed on microrough substrates with 0.3 μm and 1.0 μm size of asperities. On the remaining rough substrates, friction forces were significantly higher but still lower than on the smooth substrate. Both sexes generated similar forces on the same substrate, in spite of the considerable difference in their body mass. Thus, it is expected that both sexes can attach effectively to differently structured plant substrates in their habitat. However, since smooth surfaces have been reported previously to be the most favorable substrates for ovipositing females of C. pomonella, it is possible that they use their attachment system to sense the substrate texture and prefer those substrates to which their arolia attach the best.  相似文献   

18.
《Biophysical journal》2022,121(15):2981-2993
When lipid membranes curve or are subjected to strong shear forces, the two apposed leaflets of the bilayer slide past each other. The drag that one leaflet creates on the other is quantified by the coefficient of interleaflet friction, b. Existing measurements of this coefficient range over several orders of magnitude, so we used a recently developed microfluidic technique to measure it systematically in supported lipid membranes. Fluid shear stress was used to force the top leaflet of a supported membrane to slide over the stationary lower leaflet. Here, we show that this technique yields a reproducible measurement of the friction coefficient and is sensitive enough to detect differences in friction between membranes made from saturated and unsaturated lipids. Adding cholesterol to saturated and unsaturated membranes increased interleaflet friction significantly. We also discovered that fluid shear stress can reversibly induce gel phase in supported lipid bilayers that are close to the gel-transition temperature.  相似文献   

19.
Human radial digits have derived features compared with apes, with long robust thumbs, relatively larger joint surfaces, and hypertrophic thenar muscles. Here we test the hypothesis that these features evolved in the context of making and using stone tools, specifically for producing large gripping forces and for countering large joint contact stresses. We used portable force plates simulating early stone tools to: 1) document and compare the magnitude of external/internal forces and joint stresses in the radial digits during hardhammer percussion and flake use, and 2) examine how variation in digit morphology affects muscle and joint mechanics during stone tool use. Force and kinematic data were collected from a sample representing normal variation in digit morphology (n = 25). The effects of digit size/shape on digit biomechanics were evaluated using partial correlations, controlling for tool reaction forces and impact velocities. Results show that individuals with longer digits require relatively less muscle force to stabilize digital joints, and are exposed to relatively lower joint contact stresses during stone tool use, due in part to an increase in the robusticity of metacarpals and phalanges in humans relative to chimpanzees. These analyses further suggest that Pan- or australopith-like pollical anatomy presents serious performance challenges to habitual tool use. Our data support the hypothesis that evolutionary increases in thumb length, robusticity, and thenar muscle mass enabled Homo to produce more force and to tolerate higher joint stresses during tool use.  相似文献   

20.
Two experiments involving indirect touch were carried out to explore the relationships among perceptual dimensions of haptically examined surfaces. Subjects in both experiments used a stylus to evaluate the properties of virtual surfaces created by a force-feedback device; four surface properties (resistance to normal force, coefficient of friction, texture scale, and vibration amplitude) were manipulated in various combinations. In Experiment 1, the extent to which there was a one-to-one relationship between specific stimulus properties and perceptual qualities (“perceptual separability”) was evaluated. A substantial failure of separability was demonstrated, with friction tending to be more separable from the other properties than they were from one another. The pattern of results suggests that the amount of measured separability depends crucially on the way stimulus properties are defined (e.g., force versus displacement). In Experiment 2, surfaces with known perceptual properties were used to study the metric(s) of the relevant perceptual space. By specifying the perceptual, rather than the stimulus, coordinates of the surfaces, it was possible to bypass issues of perceptual separability. For surfaces of equal friction, a Euclidean metric captured the results (r2?=?0.75) more effectively than a city-block metric did; neither metric did well when differences in friction were involved. The fact that—unlike stickiness—hardness, roughness, and perceived vibration intensity are all increasing functions of surface-normal forces may facilitate their integration into a Euclidean space, in both direct (Hollins M, Bensmaïa S, Karlof K, Young F, . Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Percept Psychophys 62:1534–1544.) and indirect touch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号