首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sultopride and sulpiride are both chemically similar benzamide derivatives and selective antagonists of dopamine D2 receptors. However, these drugs differ in clinical properties. We compared the effects of sultopride and sulpiride on dopamine turnover in rats following the administration of these drugs alone or in combination with apomorphine. The administration of sultopride or sulpiride markedly accelerated dopamine turnover in the rat brain. The increase in the level of dopamine metabolites in the striatum was more marked in the sultopride-treated rats. Sulpiride affected the limbic dopamine receptors preferentially, whereas sultopride affected the striatal and the limoic dopamine receptors equally. A low dose of apomorphine induced a reduction in the concentration of dopamine metabolites in the striatum and the nucleus accumbens by approximately 55%, but not in the medial prefrontal cortex. Sultopride was more effective in preventing an apomorphine-induced reduction in dopamine metabolite levels. These results from rat experiments would model the pharmacological differences observed between sultopride and sulpiride in clinical use.  相似文献   

2.
The effects of dopamine (DA) agonists and antagonists were investigated on indomethacin--and restraint stress (6 hr at RT)--induced gastric ulcer formation in rats. The DA-agonists, apomorphine and bromocryptine (both at 5 mg/kg) significantly attenuated the frequency and severity of gastric mucosal lesions in both experimental models. The DA-antagonist, haloperidol (0.05 and 1.0 mg/kg) aggravated the gastric ulcerogenesis of both indomethacin and stress, the effects with the lower dose being statistically significant. Haloperidol (0.05 mg/kg) also prevented the cytoprotective effects of apomorphine on indomethacin-ulcers. The atypical DA-antagonist, sulpiride (10 and 50 mg/kg), however, showed differential dose- and model-specific effects. Whereas, the lower dose attenuated indomethacin-ulcers, the higher dose (50 mg/kg) tended to aggravate this phenomenon. The trend of results were reversed in the restraint stress model. Indomethacin (1 mg/kg) aggravated stress-ulcers, an effect which was also appreciably neutralised by apomorphine (5 mg/kg) pretreatment. These results are discussed in light of possible prostaglandin-DA interactions during such experimental gastric pathology.  相似文献   

3.
The effects of the neuroleptics, sulpiride and haloperidol, on dopamine (DA) turnover were compared following the acute and chronic administration of these drugs alone or in combination with levodopa or apomorphine. In the acute treatment, the increase in DA metabolites in the striatum and nucleus accumbens was more marked in the haloperidol-treated rats than in the sulpiridetreated rats. Following the additional administration of levodopa, however, the potency of the neuroleptics in elevating DA metabolites was reversed. A low dose of apomorphine induced a marked reduction in the striatal DA metabolite levels by approximately 50%. When rats were pretreated with the neuroleptics, haloperidol was more effective in preventing an apomorphine-induced reduction in DA metabolites. On repeated administration of the neuroleptics, a tolerance occurred in the striatum and nucleus accumbens, but not in the prefrontal cortex. This differential development of tolerance was observed in the different brain regions and with the different drugs administered. These results suggests that the pharmacological mechanism of sulpiride on DA turnover differs from that of haloperidol.  相似文献   

4.
The present work studied in vivo neuroprotective effects of n-acetylserotonin (NAS), the immediate precursor of melatonin, on the dopaminergic system, in rats lesioned with the unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). Two weeks after the lesion, the dopamine receptor agonist, apomorphine, produced rotational asymmetry, and the NAS treatment significantly reduced the motor deficit following the apomorphine challenge. The apomorphine-induced rotational behavior was blocked by 84, 86 and 53% after NAS, at doses of 2, 5 and 10 mg/kg, i.p., respectively. The injection of 6-OHDA significantly decreased DA, DOPAC and HVA levels in the rat striatum. In contrast, the NAS (2, 5 and 10 mg/kg, i.p., daily for 7 days) treatment partially reversed the decreases caused by 6-OHDA, and the neurotransmitter levels were brought to approximately 50% of that observed in the contralateral sides. NAS was more efficient at the smaller doses. NAS (5 mg/kg) produced an up-regulation of D1 (37%) and D2 (37%) receptors associated with a decrease in Kd values.  相似文献   

5.
H Lal 《Life sciences》1975,17(4):483-495
Acute systematic administration of narcotic analgesics increases the firing rate of nerve cells in the zona compacta of the substantia nigra, causes an increase in the rate of dopamine turnover in striatal and mesolimbic areas of the brain, stimulates prolactin release, inhibits brain self-stimulation and discriminated shock-avoidance, blocks cardiovascular effects of systemically injected dopamine, blocks aggression as well as compulsive jumping in mice treated with DOPA and amphetamine, antagonizes stereotypy induced by apomorphine or amphetamine, and blocks apomorphine-induced vomiting in dogs. Chronic administration of narcotic analgesics results in withdrawal signs upon the cessation of the drug administration. These signs include, tolerance to the increase in striatal dopamine turnover caused by narcotic analgesics or haloperidol, aggressive behaviors which are further stimulated by directly or indirectly acting dopamine-receptor agonists and are blocked by dopamine-receptor blockers, facilitation of recovery from the “lateral hypothalamic syndrome”, an increase in basal levels of striatal adenylate cyclase which shows greater sensitivity to dopamine, and, an enhanced sensitivity to apomorphine-induced reduction of dopamine turnover. It is therefore, concluded that acute administration of narcotic drugs results in an inhibition of dopamine-receptor activity while chronic administration of these drugs results in an increased response of these dopamine receptors to dopamine agonists. Recent experiments on the interaction of other drugs with narcotic analgesics suggest that, unlike the direct action of neuroleptics on the dopamine receptors, the narcotic action on dopamine receptors is indirect.  相似文献   

6.
Planaria represents the most primitive example of centralization and cephalization of nervous system. Previous reports indicate that planaria shows specific behavioral patterns, analogous to mammalian stereotypes, in response to drugs acting on acetylcholine or dopamine transmission. Here we further characterized these responses, and investigated the interactions between cholinergic and dopaminergic systems by means of behavioral methods. Exposure to cholinergic agonists physostigmine or nicotine produced hypokinesia with ‘bridge-like’ and ‘walnut’ positions, respectively. Blockade of muscarinic receptors by atropine produced ‘screw-like’ hyperkinesia. Exposure to dopamine agonists (nomifensine, apomorphine) produced marked hyperkinesia with ‘screw-like’ movements. Finally, exposure to dopamine antagonists produced immobility or ‘bridge-like’ position. Pre-exposure to physostigmine blocked the behavioral effects of nomifensine and reduced and markedly delayed the behavioral effects of apomorphine. Pre-exposure to apomorphine slightly reduced and delayed the behavioral changes by physostigmine. Finally, planaria exposed to atropine after either SCH23388 or sulpiride showed ‘C-like’ or ‘screw-like’ hyperkinesia, respectively. Thus, reduction of cholinergic transmission seems to play a pivotal role in determining hyperkinesia in planaria. Under these conditions, different patterns of hyperkinetic activities occur, according to the subpopulation of dopamine receptors stimulated by drugs. These findings suggest that interactions between cholinergic and dopaminergic systems occur very early in animal phylogeny.  相似文献   

7.
The chronic administration of estrogens to mice or rats will result in antidopaminergic effects. Apomorphine-induced climbing behavior in mice, the result of direct stimulation of dopamine receptors in the striatal and mesolimbic regions, is a simple animal model for examining these antidopaminergic effects of estrogens. Bromoestrogens, inhibitors of catechol estrogen formation, have been utilized in order to examine the role of estrogen metabolism in dopaminergic antagonism. Mice were pretreated for 3 days with 2-bromoestradiol, 4-bromoestradiol, or 2,4-dibromoestradiol dibenzoates alone or in combination with estradiol benzoate prior to apomorphine administration. The haloestrogens did not alter the climbing-induced responses elicited by apomorphine, whereas estradiol benzoate clearly attentuated the actions of apomorphine. Furthermore, the bromoestradiol dibenzoates were effective in reversing the effects of estradiol benzoate when the two steroids (estradiol benzoate and a bromoestrogen dibenzoate) were administered simultaneously during pretreatment. Thus, the bromoestrogens are able to inhibit the antidopaminergic effects of estradiol exhibited in the apomorphine-induced mouse climbing model.  相似文献   

8.
Neonatal treatment of mice with opioid and dopamine antagonists (naloxone, haloperidol and sulpiride) failed to alter the in vitro responsiveness of vasa deferentia to opioid agonists in the adulthood. Single neonatal administration of some opioid or dopaminergic agonists, viz. Met-enkephalin and piribedil, tended to enhance the sensitivity of in vitro preparations to opioid agonists, tested in adult animals. Behavioural differences and late mortality were also observed.  相似文献   

9.
Administration of the dopamine receptor agonists apomorphine, piribedil and bromocryptine caused an increase in adrenal tyrosine hydroxylase (TH; tyrosine-3-monooxygenase, EC 1.14.16.2) which could be partially abolished by prior injection of the dopamine blocker haloperidol. Injection of L-dihydroxyphenylalanine, along with the decarboxylase inhibitor carbidopa, also led to a highly significant increase in adrenal TH activity. Intraventricular injection of 5,7-dihydroxytryptamine (DHT), which destroys serotonin neurons, doubled adrenal TH activity in both normal and hypophysectomized rats. Splanchnicotomy abolished this effect of DHT. The increase in enzyme activity mediated by DHT could be partially prevented by peripheral administration of L-5-hydroxytryptophan together with carbidopa. Blockade of serotoninergic functions with the antagonist methiothepin also increased adrenal TH activity. The interrelationship between the dopamine and the presumed serotonin system was investigated. Intraventricular injection of 6-hydroxydopamine partially prevented the DHT-induced increase in adrenal TH activity. Administration of haloperidol to DHT-treated rats had the same effect. This suggests that an intact dopaminergic system is required. When DHT and either apomorphine or piribedil were adminstered simultancously the dopamine agonist-induced increase was potentiated. An intact serotoninergic system is therefore not required for dopamine function. Thus, the increase in adrenal TH activity is associated with either stimulation of central dopamine receptors or destruction of serotonin neurons. It is suggested that dopaminergic and serotoninergic systems are involved in the regulation of adrenal TH and that these systems have net excitatory and inhibitory roles, respectively. Furthermore, the present evidence favors the view that the interaction between the two systems is sequential, with the serotonin system preceding the dopamine one.  相似文献   

10.
《Life sciences》1997,60(22):PL317-PL323
In the present study, we examined the effects of the agonists and antagonists of cholinergic receptors on central dopaminergic function using the 6-hydroxydopamine model of dopamine receptor supersensitivity. Unilateral lesioning of the substantia nigra with 6-hydroxydopamine was carried out in Wistar rats. Two weeks after surgery, the rats were tested for the presence of dopaminergic supersensitivity by their response to the dopamine receptor agonist, apomorphine. Apomorphine-induced rotations were significantly reinforced by the muscarinic receptor antagonist, atropine. In contrast to atropine, the muscarinic receptor agonist oxotremorine attenuated apomorphine's effects. Acute treatment of nicotine significantly reduced apomorphine-induced rotations. However, when increasing doses of nicotine were given for nine days, the rotations of the nicotine-dependent rats were significantly enhanced. So the fact that both muscarinic and nicotinic cholinergic activity could modulate apomorphine-induced rotations was readily apparent in these experiments.  相似文献   

11.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that local infusions of 1 mM N-nitro-L-arginine (NO-synthase inhibitors) in the rat striatum reduced, and infusions of 100 microM apomorphine (agonists of the dopamine receptors) increased the level of citrulline (a NO co-product) in extracellular space of this structure. The apomorphine-induced increase in citrulline extracellular levels in the striatum was completely prevented by infusions of N-nitro-L-arginine in this structure, and 10 microM raclopride (dopamine D2 receptor blocker), but not by infusions of 50 microM SCH-23390 (dopamine D1 receptor blocker). The data obtained suggest that the increase in citrulline extracellular levels in striatum resulted from local activation of NO-synthase, and this effect is mediated by D2 rather than D1 dopamine receptors.  相似文献   

12.
Abstract: Several α-adrenergic receptor agonists and antagonists were used to strengthen the earlier findings that the stimulation by (-)-norepinephrine of 32P1 incorporation into acidic phospholipids, especially phosphatidylinositol, in the rat pineal gland is mediated through α-adrenergic receptors. Dopamine was able to induce similar stimulation, although always to a smaller extent than equimolar concentrations of norepinephrine. The dopaminergic agonists apomorphine and piribedil did not increase phosphatidylinositol labeling. A number of antagonists considered to act primarily at dopaminergic or α-adrenergic receptors respectively completely prevented dopamine from exerting its effect. Both types of antagonists also were able to inhibit in varying degree the elevation of phospholipid labeling induced by norepinephrine. Dopamine increased phosphatidylinositol turnover without first being converted to norepinephrine, inasmuch as dopamine β-hydroxylase inhibitors had no influence on dopamine activity. Dopamine and α-agonists competitively activated the receptors involved in the phospholipid effect. The conclusion drawn from the several lines of evidence is that only α-adrenergic receptors are concerned with the changes in pineal phospholipid metabolism brought about by the various agonists used and that the action of dopamine occurs through these receptors rather than through discrete dopaminergic receptors.  相似文献   

13.
It has long been shown by Biggio and Guidotti that multisynaptic nigro-cerebellar pathway of dopaminergic origin can control cerebellar cyclic guanosinmonophosphate (cGMP) content, a good index of the activity of Purkinje cells. In this line, it has been reported that haloperidol and sulpiride, significantly decrease cerebellar cGMP content while opposite changes are observed with apomorphine. In an attempt to establish whether other cerebellar cGMP-related parameters may be influenced by dopamine drugs. Authors have investigated the effects of haloperidol, sulpiride and apomorphine on cerebellar PGE2 and PGF2alpha. Results obtained indicate that haloperidol and sulpiride significantly reduce cerebellar PGE2 and PGF2alpha content while opposite changes are induced by apomorphine. Similar results have been observed in substantia nigra but not in other brain regions, such as corpus striatum and medial basal hypothalamus. The possibility that the observed changes in cerebellar PG-content may result from the modulation of striatal dopamine receptors is discussed.  相似文献   

14.
Dopamine can act directly on pituitary cells to inhibit prolactin release. This action can be blocked by dopamine receptor blocking drugs such as haloperidol, sulpiride and other neuroleptic agents. Comparison of the properties of the mammotroph dopamine receptor with the adenylate cyclase linked dopamine receptor of the limbic forebrain reveals some obvious differences. For example, dopamine receptor stimulants such as S-584 and lergotrile mesylate are inactive in stimulating the adenylate cyclase preparations but are potent in inhibiting pituitary prolactin secretion. Such inhibition of prolactin secretion can be reversed by haloperidol or sulpiride. In contrast to these observations, sulpiride does not block dopamine stimulation of cAMP formation. In addition, dopamine, apomorphine or lergotrile mesylate have no effect on a pituitary adenylate cyclase preparation and dopamine fails to elevate cAMP in the intact cells in culture. Despite the similarity between these two dopamine sensitive systems with respect to a number of agonists and antagonists, the exceptions described suggest that the pituitary system with further study may offer some greater reliability as a predictive test for clinically useful agents. These results also suggest that the receptors for dopamine, like that for norepinephrine, are of two types, only one of which is coupled to adenylate cyclase.  相似文献   

15.
Sulpiride is a new neuroleptic which does not produce extrapyramidal side effects in humans nor catalepsy in experimental animals. Sulpiride in rat striatum and nucleus accumbens homogenates fails to block adenylate cyclase activation induced by both dopamine and apomorphine. Moreover the in vivo cyclic adenosine monophosphate accumulation induced by apomorphine in the striatum of rats is not blocked by sulpiride as haloperidol and other classic neuroleptic do. Sulpiride appears to be unique in respect to other neuroleptic since according to the experiments reported in this paper it does not block dopamine receptors either in vitro or in vivo.  相似文献   

16.
P Worms  C Gueudet  K Biziere 《Life sciences》1986,39(23):2199-2208
A new simple model designed for the screening of dopaminomimetic drugs in mice is presented. When injected directly into the right striatum of conscious mice, the dopamine (DA) receptor agonists apomorphine, SKF 38393 and bromocryptine, the indirect DAmimetic drugs (+)-amphetamine and nomifensine, the atypical DAergic antidepressant drug minaprine, induced contralateral rotations. Rotations induced by DA mimetics were antagonized by i.p. injected haloperidol. A pretreatment with the D1 antagonist SCH 23390 (s.c.) antagonized the turning induced by apomorphine or by the D1 agonist SKF 38393, and, to a lesser extent, that induced by the D2 agonist bromocryptine. In contrast, the D2 antagonist (-)-sulpiride (i.p.) blocked the effects of the 3 agonists to the same extent. A pretreatment with alpha-methylparatyrosine (i.p.) antagonized rotations induced by bromocryptine, (+)-amphetamine and minaprine, but not those induced by nomifensine or apomorphine. The results suggest that this model could represent a useful screening tool for the search of new DAmimetic drugs, and for the assessment of DA receptor blockade.  相似文献   

17.
Methysergide administered i.p. caused a dose dependent decrease of serum prolactin levels in rats of both sexes bearing large bilateral electrolytic lesions in the median eminence. This prolactin release inhibiting action of methysergide was prevented by pretreatment of the animals with dopamine receptor blockers pimozide or spiroperidol, which by themselves had no effect on serum prolactin levels. Similar results were observed when the dopamine receptor agonist piribedil was used instead of methysergide. It is concluded that methysergide is capable of inhibiting prolactin secretion by activation of dopamine receptors of the pituitary lactotrophs.  相似文献   

18.
G L Orr  J W Gole  H J Notman  R G Downer 《Life sciences》1987,41(25):2705-2715
Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 microM and at 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 microM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 microM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D2-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 microM. Other dopamine agonists (apomorphine, SKF-82526, SKF-38393) have no stimulatory effects. The octopamine-sensitive AC is inhibited by a variety of antagonists known to affect octopamine and dopamine receptors, with the following order of potency: mianserin greater than phentolamine greater than cyproheptadine greater than piflutixol greater than cis-flupentixol greater than SCH-23390 greater than (+)-butaclamol greater than SKF-83566 greater than SCH-23388 greater than sulpiride greater than spiperone greater than haloperidol. The dopamine-sensitive AC is inhibited by the same compounds with the following order of potency: piflutixol greater than cis-flupentixol greater than (+)-butaclamol greater than spiperone greater than or equal to SCH-23390 greater than cyproheptadine greater than SKF-83566 greater than SCH 23388 greater than mianserin greater than phentolamine greater than sulpiride greater than haloperidol. With the exception of mianserin, 3H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D1- and D2-dopamine receptors.  相似文献   

19.
C A Tieppo  L F Felicio  A G Nasello 《Peptides》2001,22(8):1291-1298
Stereotyped behavior can be induced by the dopamine agonist apomorphine or by the releasing agent amphetamine. Cholecystokinin influence on dopamine-mediated behaviors has been extensively studied but a real controversy remains. Our purpose was to further characterize the dopamine-cholecystokinin interaction in apomorphine- and amphetamine-induced stereotyped behavior using sulphated cholecystokinin octapeptide (CCK8) and cholecystokinin tetrapeptide (CCK4) treatments. The results showed that CCK8 decreases apomorphine-induced stereotyped behavior and CCK4 has no effect. CCK4 and CCK8 increased the amphetamine-induced stereotyped behavior; CCK4 was more effective. The results confirm the opposite modulation of apomorphine or amphetamine-induced stereotyped behavior by CCK. These data suggest that this modulation is mediated by both CCK receptors on apomorphine-induced and only by CCK(2) receptors on amphetamine-induced stereotyped behavior.  相似文献   

20.
The effects of short and long-acting dopamine agonists on sensitized dopaminergic transmission in an animal model of Parkinson's disease were investigated. Rats with 6-hydroxydopamine (6-OHDA) lesions of the left nigrostriatal dopaminergic pathway were pre-exposed i.p. to 50 mg/kg methyl levodopa for 10 days. After a 7-day withdrawal period, these animals were treated with saline i.p., 0.05 mg/kg apomorphine s.c., or 0.5 mg/kg cabergoline i.p., once daily for 7 days. On the 8th day, rats in each treatment group received a challenge dose of 0.05 mg/kg apomorphine or saline s.c. The temporal changes in the number of rotations away from the 6-OHDA lesion side were evaluated after the challenge. The apomorphine challenge increased the number of rotations more markedly in the apomorphine pretreated rats than in the other pretreatment groups. In cabergoline pretreated rats, the number of rotations was significantly lower than that of saline-pretreated animals. Pretreatment with saline did not alter the apomorphine sensitivity of rotational behavior. These findings suggest that the repeated administration of long-acting dopamine agonists may reduce sensitized dopaminergic transmission in dopamine-depleted rats, whereas short-acting ones may further enhance sensitization of the transmission process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号