共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. 总被引:11,自引:0,他引:11
U Grohmann F Fallarino R Bianchi M L Belladonna C Vacca C Orabona C Uyttenhove M C Fioretti P Puccetti 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(2):708-714
The outcome of dendritic cell (DC) presentation of tumor and/or self peptides, including P815AB (a tumor peptide of murine mastocytoma cells) and NRP-A7 (a synthetic peptide mimotope recognized by diabetogenic T cells), may depend on a balance between the activities of immunogenic (CD8alpha(-)) and tolerogenic (CD8alpha(+)) DC. By virtue of their respective actions on CD8(-) and CD8(+) DC, IL-12 and IFN-gamma have functionally opposing effects on peptide presentation by the CD8(-) DC subset, and IFN-gamma-activated CD8(+) DC mediate tolerogenic effects that prevail over the adjuvant activity of IL-12 on CD8(-) DC. We have previously shown that CD40 ligation abrogates the tolerogenic potential of CD8(+) DC, an effect associated with an impaired capacity of the CD40-modulated and IFN-gamma-treated DC to degrade tryptophan and initiate T cell apoptosis in vitro. We report here that IL-6 may both replace (upon administration of the recombinant cytokine) and mediate (as assessed by the use of neutralizing Abs) the effect of CD40 ligation in ablating the tolerogenic activity of CD8(+) DC. The activity of IL-6 includes down-regulation of IFN-gammaR expression in the CD8(+) DC subset and correlates to a reduced ability of these cells to metabolize tryptophan and initiate T cell apoptosis in vitro. 相似文献
2.
Inhibition of allogeneic T-cell responses by dendritic cells expressing transduced indoleamine 2,3-dioxygenase 总被引:1,自引:0,他引:1
Funeshima N Fujino M Kitazawa Y Hara Y Hara Y Hayakawa K Okuyama T Kimura H Li XK 《The journal of gene medicine》2005,7(5):565-575
BACKGROUND: Indoleamine 2,3-dioxygenase (IDO) is an enzyme involved in the catabolism of tryptophan and has been shown to prevent rejection of the fetus during pregnancy by inhibiting alloreactive T cells. METHODS: In this study we investigated dendritic cells (DCs) that are transfected with IDO cDNA in the inhibition of T-cell proliferation after antigen-specific interaction. XS106 DCs, derived from A/J mice (H-2k), were transduced with IDO with a gene-delivery system using a recombinant adenoviral vector. RESULTS: Western blotting and immune staining revealed IDO expression in XS106 DCs transduced with IDO (XS106-IDO DCs), and its catabolic effect was confirmed by an increase in kynurenine concentration. Fluorescence-activated cell sorting revealed that XS106-IDO DCs were not changeable for Ia, CD80, and CD86 expression. After XS106-IDO DCs were co-cultured with C57BL/6 allogeneic splenic T cells, the proliferation of the T cell was significantly inhibited. The co-cultured T cells with XS106-IDO DCs exhibited cell-cycle arrest. Furthermore, injection of XS160-IDO DCs into the footpads of C57BL/6 (H-2b) mice demonstrated a reduced T-cell response against allo-antigen. CONCLUSIONS: These results suggest that overexpression of IDO in the DCs effectively inhibited T-cell proliferation, and may expand a new immunomodulatory strategy for the prevention of allo-rejection of organ transplantation. 相似文献
3.
IFN-gamma is the inducer of indoleamine 2,3-dioxygenase in allografted tumor cells undergoing rejection 总被引:3,自引:0,他引:3
O Takikawa A Habara-Ohkubo R Yoshida 《Journal of immunology (Baltimore, Md. : 1950)》1990,145(4):1246-1250
The depletion of an essential amino acid, tryptophan, caused by induction of indoleamine 2,3-dioxygenase (IDO), has been shown to be a mechanism involving self-defense against inhaled microorganisms and tumor growth. We recently reported that the IDO is dramatically (approximately 50-fold) induced in allografted tumor (3-methylcholanthrene-induced ascites type tumor cells) cells undergoing rejection, and that the enzyme is induced by factor(s) released through the interaction of allografted tumor cells with infiltrating leukocytes. The culture supernatant of infiltrating leukocytes, which were harvested on day 7 after tumor transplantation, induced the highest IDO activity in the tumor cells. The inducer activity was completely neutralized by the addition of antibody to IFN-gamma but not by antibody to IFN-alpha/beta. Approximately 6 U/ml of IFN-gamma was detected by an ELISA assay in the 12-h culture supernatant with 2 x 10(6) leukocytes/ml, and rIFN-gamma at 6 U/ml induced IDO in 3-methylcholanthrene-induced ascites type tumor cells to the same extent as IFN-gamma in the culture supernatant. Moreover, i.p. administration of antibody to IFN-gamma almost completely inhibited the induction of IDO in the allografted tumor cells. These observations indicate that the factor responsible for IDO induction in the allografted tumor cells is IFN-gamma. 相似文献
4.
5.
Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses 总被引:34,自引:0,他引:34
Mellor AL Keskin DB Johnson T Chandler P Munn DH 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(8):3771-3776
Pharmacological inhibition of indoleamine 2,3-dioxygenase (IDO) activity during murine gestation results in fetal allograft rejection and blocks the ability of murine CD8(+) dendritic cells to suppress delayed-type hypersensitivity responses to tumor-associated peptide Ags. These observations suggest that cells expressing IDO inhibit T cell responses in vivo. To directly evaluate the hypothesis that cells expressing IDO inhibit T cell responses, we prepared IDO-transfected cell lines and transgenic mice overexpressing IDO and assessed allogeneic T cell responses in vitro and in vivo. T cells cocultured with IDO-transfected cells did not proliferate but expressed activation markers. The potency of allogeneic T cell responses was reduced significantly when mice were preimmunized with IDO-transfected cells. In addition, adoptive transfer of alloreactive donor T cells yielded reduced numbers of donor T cells when injected into IDO-transgenic recipient mice. These outcomes suggest that genetically enhanced IDO activity inhibited T cell proliferation in vitro and in vivo. Genetic manipulation of IDO activity may be of therapeutic utility in suppressing undesirable T cell responses. 相似文献
6.
Munir S Larsen SK Iversen TZ Donia M Klausen TW Svane IM Straten PT Andersen MH 《PloS one》2012,7(4):e34568
Background
The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8+ T-cell reactivity towards IDO-derived peptides.Methods and Findings
In the present study, we show that CD4+ helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4+ T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4+ T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4+ T cells released IFN-γ, TNF-α, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4+ T cells and CD8+ CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4+ T cells.Conclusion
IDO is spontaneously recognized by HLA class II-restricted, CD4+ T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4+ responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression. 相似文献7.
Tryptophan catabolism initiated by the enzyme indoleamine 2,3-dioxygenase (IDO) has been postulated to be a natural regulatory mechanism for T cells. In this study, we generated a pig endothelial cell line expressing full-length human IDO (P-HuIDO) to serve as a simple model of a cellular xenogeneic graft. Splenocytes from mice primed to P-HuIDO cells were found to be as responsive to secondary stimulation as splenocytes from mice primed to parental cells. However, in T-cell proliferation assays using P-HuIDO cells as stimulators, a significant inhibition of both naive and memory xenogeneic proliferative responses was noted. Furthermore, the production of interferon-gamma and cytotoxic T lymphocyte function were also affected. When severe combined immunodeficiency mice were grafted with P-HuIDO cells, then challenged with primed splenocytes from BALB/c mice, cellular infiltration to the graft was delayed. Our findings suggest that transgenic expression of IDO in xenografts contributes to prolonged graft survival. 相似文献
8.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase 总被引:16,自引:0,他引:16
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in the liver and kidney of the kynurenine-metabolizing enzymes suggested that kynurenine thus formed was transported by the bloodstream to those two organs to be metabolized. In fact, the plasma kynurenine level increased in parallel with the induction of the dioxygenase by lipopolysaccharide, and kinetic analysis indicated that at the maximal induction of the enzyme there was a 3-fold increase in the kynurenine production. The major metabolic route of kynurenine was excretion in urine as xanthurenic acid. This increase in the kynurenine production was not explained by L-tryptophan 2,3-dioxygenase in the liver, because during the induction of indoleamine 2,3-dioxygenase, the hepatic enzyme level was substantially suppressed. These findings indicated that indoleamine 2,3-dioxygenase actively oxidized tryptophan in mice and that its induction resulted in an increase in tryptophan degradation. 相似文献
9.
Indoleamine 2,3-dioxygenase (IDO) is a heme-containing enzyme, which catalyzes the initial and rate-determining step of L-tryptophan (L-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Similar to inducible nitric oxide synthase (iNOS), IDO is induced by interferon-gamma and lipopolysaccharide in the inflammatory response. In vivo studies indicate that the nitric oxide (NO) produced by iNOS inhibits IDO activity by directly interacting with it and by promoting its degradation through the proteasome pathway. In this work, the molecular mechanisms underlying the interactions between NO and human recombinant IDO (hIDO) were systematically studied with optical absorption and resonance Raman spectroscopies. Resonance Raman data show that the heme prosthetic group in the NO-bound hIDO is situated in a unique protein environment and adopts an out-of-plane deformed geometry that is sensitive to L-Trp binding. Under mildly acidic conditions, the proximal heme iron-His bond is prone to rupture, resulting in a five-coordinate (5C) NO-bound species. The bond breakage reaction induces significant conformational changes in the protein matrix, which may account for the NO-induced inactivation of hIDO and its enhanced proteasome-linked degradation in vivo. Moreover, it was found that the NO-induced bond breakage reaction occurs more rapidly in the ferrous protein than in the ferric protein and is fully inhibited by L-Trp binding. The spectroscopic data presented here not only provide the first glimpse of the possible regulatory mechanism of hIDO by NO in the cell at the molecular level, but they also suggest that the NO-dependent regulation can be modulated by cellular factors, such as the NO abundance, pH, redox environment, and L-Trp availability. 相似文献
10.
Yu-Wen He Hong-Sheng Wang Jun Zeng Xiefan Fang Hong-Yuan Chen Jun Du Xin-yun Yang 《Life sciences》2013
Aims
Indoleamine 2,3-dioxygenase (IDO) inhibits T-cell proliferation by catalyzing the conversion of l-tryptophan to l-kynurenine. IDO-induced immune tolerance weakens the clinical outcomes of immunotherapies. Sodium butyrate (NaB), one of the histone deacetylase inhibitors (HDACIs), has potential anti-tumor effects. Our previous studies revealed that NaB could inhibit IFN-γ induced IDO expression in nasopharyngeal carcinoma cells, CNE2. In the present study, we aim to investigate to the mechanism of NaB interfering with the interferon-gamma (IFN-γ)-mediated IDO expression signaling transduction.Main methods
IDO expression and STAT1 phosphorylation in CNE2 cells were analyzed by western blotting and STAT1 acetylation was evaluated by immunoprecipitation. STAT1 nuclear translocation and NF-κB activity were detected by transient transfection and reporter gene assay.Key findings
We found that NaB inhibited IFN-γ-induced IDO expression in CNE2 cells via decreasing phosphorylation and nuclear translocation of STAT1, but not via down-regulation of IFN-γ-receptor (IFNGR). Immunoprecipitation assays revealed that NaB increased STAT1 acetylation. Furthermore, NaB elevated the activity of NF-κB in CNE2 cells, and blocking the NF-κB activity had no effect on the IFN-γ-induced IDO expression.Significance
These results suggest that NaB inhibited IFN-γ-induced IDO expression via STAT1 increased acetylation, decreased phosphorylation, and reduced nuclear translocation. These provided new evidence for the anti-tumor action of NaB and potential drug targets to reduce the IDO-induced immune tolerance. 相似文献11.
We tested the hypothesis that hCG can upregulate human trophoblast indoleamine 2, 3-dioxygenase (INDO), which catalyzes the breakdown of tryptophan in villous circulation. The results revealed that it can. Treatment of human trophoblasts with hCG resulted in a time and dose dependent increase in INDO mRNA and protein levels and its enzyme activity. The hCG effect was hormone specific and required the dimer conformation of hCG. The hCG effect required its receptors and was mediated by a cAMP dependent, but protein kinase A independent, mitogen-activated protein kinase 3/1 (MAPK3/1) signaling mechanism. In summary, the present data demonstrate a novel hCG effect on human placental INDO, which probably plays a key role at maternal fetal interface in preventing fetal rejection. 相似文献
12.
Thomas SR Terentis AC Cai H Takikawa O Levina A Lay PA Freewan M Stocker R 《The Journal of biological chemistry》2007,282(33):23778-23787
The heme protein indoleamine 2,3-dioxygenase (IDO) is induced by the proinflammatory cytokine interferon-gamma (IFNgamma) and plays an important role in the immune response by catalyzing the oxidative degradation of L-tryptophan (Trp) that contributes to immune suppression and tolerance. Here we examined the mechanism by which nitric oxide (NO) inhibits human IDO activity. Exposure of IFNgamma-stimulated human monocyte-derived macrophages (MDM) to NO donors had no material impact on IDO mRNA or protein expression, yet exposure of MDM or transfected COS-7 cells expressing active human IDO to NO donors resulted in reversible inhibition of IDO activity. NO also inhibited the activity of purified recombinant human IDO (rhIDO) in a reversible manner and this correlated with NO binding to the heme of rhIDO. Optical absorption and resonance Raman spectroscopy identified NO-inactivated rhIDO as a ferrous iron (Fe(II))-NO-Trp adduct. Stopped-flow kinetic studies revealed that NO reacted most rapidly with Fe(II) rhIDO in the presence of Trp. These findings demonstrate that NO inhibits rhIDO activity reversibly by binding to the active site heme to trap the enzyme as an inactive nitrosyl-Fe(II) enzyme adduct with Trp bound and O2 displaced. Reversible inhibition by NO may represent an important mechanism in controlling the immune regulatory actions of IDO. 相似文献
13.
Indoleamine 2,3-dioxygenase (IDO) reacts with either oxygen or superoxide and tryptophan (trp) or other indoleamines while tryptophan 2,3-dioxygenase (TDO) reacts with oxygen and is specific for trp. These enzymes catalyze the rate-limiting step in the kynurenine (KYN) pathway from trp to quinolinic acid (QA) with TDO in kidney and liver and IDO in many tissues, including brain where it is low but inducible. QA, which does not cross the blood-brain barrier, is an excitotoxin found in the CNS during various pathologies and is associated with convulsions. We proposed that HBO-induced convulsions result from increased flux through the KYN pathway via oxygen stimulation of IDO. To test this, TDO and IDO of liver and brain, respectively, of Sprague Dawley rats were assayed with oxygen from 0 to 6.2 atm HBO. TDO activity was appreciable at even 30 microM oxygen and rose steeply to a maximum at 40 microM. Conversely, IDO had almost no detectable activity at or below 100 microM oxygen and maximum activity was not reached until about 1150 microM. (Plasma contains about 215 microM oxygen and capillaries about 20 microM oxygen when rats breathe air.) KYN was 60% higher in brains of HBO-convulsed rats compared to rats breathing air. While the oxygen concentration inside cells of rats breathing air or HBO is not known precisely, it is clear that the rate-limiting, IDO-catalyzed step in the brain KYN pathway (but not liver TDO) can be greatly accelerated in rats breathing HBO. 相似文献
14.
15.
《Bioorganic & medicinal chemistry letters》2020,30(11):127159
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs. 相似文献
16.
Optimised expression and purification of recombinant human indoleamine 2,3-dioxygenase 总被引:5,自引:0,他引:5
Austin CJ Mizdrak J Matin A Sirijovski N Kosim-Satyaputra P Willows RD Roberts TH Truscott RJ Polekhina G Parker MW Jamie JF 《Protein expression and purification》2004,37(2):392-398
The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its role in the pathogenesis of many diseases. Here, we report attempts to improve soluble expression and purification of hexahistidyl-tagged recombinant human IDO from Escherichia coli (EC538, pREP4, and pQE9-IDO). Significant formation of inclusion bodies was noted at the growth temperature of 37 degrees C, with reduced formation at 30 degrees C. The addition of the natural biosynthetic precursor of protoporphrin IX, delta-aminolevulinic acid (ALA), coupled with optimisation of IPTG induction levels during expression at 30 degrees C and purification by nickel-agarose and size exclusion chromatography, resulted in protein with 1 mol of heme/mol of protein and a specific activity of 160 micromol of kynurenine/h/mg of protein (both identical to native human IDO). The protein was homogeneous in terms of electrophoretic analysis. Yields of soluble protein (3-5 mg/L of bacterial culture) and heme content are greater than previously reported. 相似文献
17.
18.
Akihiro Maeta Mitsue Sano Tsutomu Fukuwatari Hiroshi Funakoshi Toshikazu Nakamura 《Bioscience, biotechnology, and biochemistry》2013,77(5):878-881
We investigated the contribution percentage of tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) to the conversion of d-tryptophan to nicotinamide in TDO-knockout mice. The calculated percentage conversions indicated that TDO and IDO oxidized 70 and 30%, respectively, of the dietary l-tryptophan. These results indicate that both TDO and IDO biosynthesize nicotinamide from d-tryptophan and l-tryptophan in mice. 相似文献
19.
Grant RS Naif H Thuruthyil SJ Nasr N Littlejohn T Takikawa O Kapoor V 《Redox report : communications in free radical research》2000,5(2-3):105-107
Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM. 相似文献
20.
《Redox report : communications in free radical research》2013,18(2-3):105-107
AbstractIncreased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3- dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM. 相似文献