首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAB007, an IgG1 monoclonal antibody, is unique because of the presence of a free cysteine residue in the Fab region at position 104 on the heavy chain in the CDR3 region. Mass spectrometric analysis of intact MAB007 showed multiple peaks varying in mass by 120-140 Da that cannot be fully attributed to glycosylation isoforms typically present in IgG molecules. Limited proteolysis of MAB007 with Lys-C led to a single cleavage at the C-terminus of a lysine residue in the hinge region of the heavy chain at position 222, generating free Fab and Fc fragments. Reversed-phase liquid chromatography/mass spectrometry analysis of the Fab and Fc fragments revealed several modifications. The Fab fraction showed cysteinylation of a free cysteine in the CDR3 region resulting in a mass shift of 119 Da. Using limited proteolysis, we also identified modifications resulting in a mass increase of 127 Da in the Fc region, corresponding to C-terminal lysine variants in the heavy chain. Other modifications, such as oxidation (+16 Da) and succinimide formation (-17 Da), were also detected in the Fab fragment. The cysteinylation observed after limited proteolysis was confirmed by peptide mapping coupled with tandem mass spectrometry analysis.  相似文献   

2.
The utility of a new mass spectrometric technique for detecting and identifying peptide by-products produced in the synthesis of peptides is demonstrated. The technique involves three sequential steps: (1) practically nondestructive 252Cf plasma desorption mass spectrometric analysis of monolayer amounts of the peptide(s) of interest bound to a thin layer of nitrocellulose; (2) enzyme-catalyzed microscale chemical reaction of the surface-bound peptide(s) to produce structurally informative hydrolysis products; (3) plasma desorption mass spectrometric analysis of these hydrolysis products. The first step determines the presence and the molecular weights of unwanted by-products resulting from errors or incomplete reactions during synthesis. The subsequent two steps provide information on the precise location in the peptides where errors have occurred. In the present paper, the technique is applied to an investigation of unwanted peptide by-products associated with the use of tryptophan during stepwise solid-phase peptide synthesis. Synthetic preparations of melittin and [Bpa-8]dynorphin A (1-17) were each found to contain a major impurity with molecular weight 28 Da higher than that of the desired product. The impurity in the melittin preparation, in which the final deprotection step involved the high-low HF procedure, was shown to result from incomplete removal of the formyl group from Trp-19. On the other hand, the impurity in the [Bpa-8]dynorphin A (1-17) preparation, where the removal of the formyl group from Trp-14 was carried out using piperidine, was shown to result from migration of the formyl group to Lys-11 or Lys-13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Fast atom bombardment mass spectrometry analysis of opioid peptides   总被引:2,自引:0,他引:2  
Positive and negative ion fast atom bombardment mass spectrometries have been used to determine the amino acid sequence-determining fragment ion information of opioid peptides containing from 5 to 10 amino acid residues. The opioids investigated include several enkephalins, dynorphin A fragments 1-7 through 1-10, and alpha- and beta-neoendorphins. Data obtained in the two ionization polarities provide complementary information and exhibit the C-terminal- and the N-terminal-containing amino acid sequence-determining fragment ions that are formed by cleavage of the bond between the carbonyl group and the alpha-carbon (-CHR-CO-), the peptide amide bond (-CO-NH-), and the amino-alkyl (-NH-CHR-) bond. The C-terminal sequence ions are dominant in the positive ion mode, whereas the C-terminal and N-terminal ions are equally important in the negative ion mode. Detection limits for full mass scans extend down to the picomole range. The apparent role of hydrophobicity of the amino acid residues on the fragmentation characteristics of the peptide is discussed.  相似文献   

4.
An Z  Chen Y  Koomen JM  Merkler DJ 《Proteomics》2012,12(2):173-182
Amidation is a post-translational modification found at the C-terminus of ~50% of all neuropeptide hormones. Cleavage of the C(α)-N bond of a C-terminal glycine yields the α-amidated peptide in a reaction catalyzed by peptidylglycine α-amidating monooxygenase (PAM). The mass of an α-amidated peptide decreases by 58 Da relative to its precursor. The amino acid sequences of an α-amidated peptide and its precursor differ only by the C-terminal glycine meaning that the peptides exhibit similar RP-HPLC properties and tandem mass spectral (MS/MS) fragmentation patterns. Growth of cultured cells in the presence of a PAM inhibitor ensured the coexistence of α-amidated peptides and their precursors. A strategy was developed for precursor and α-amidated peptide pairing (PAPP): LC-MS/MS data of peptide extracts were scanned for peptide pairs that differed by 58 Da in mass, but had similar RP-HPLC retention times. The resulting peptide pairs were validated by checking for similar fragmentation patterns in their MS/MS data prior to identification by database searching or manual interpretation. This approach significantly reduced the number of spectra requiring interpretation, decreasing the computing time required for database searching and enabling manual interpretation of unidentified spectra. Reported here are the α-amidated peptides identified from AtT-20 cells using the PAPP method.  相似文献   

5.
7H2HM is a new humanized recombinant monoclonal antibody (MAb) directed against insulin-like growth factor-1 receptor and produced in CHO cells. Homogeneity of intact antibody, reduced light and heavy chains, Fab and Fc fragments were investigated by analytical methods based on mass (SDS-PAGE, SEC), charge (IEF, C-IEX) and hydrophobicity differences (RP-HPLC, HIC) and compared side-by-side with A2CHM, produced in NS0 cells. Primary structures and disulfide bridge pairing were analyzed by microsequencing (Edman degradation), mass spectrometry (MALDI-TOF, ES-TOF) and peptide mapping after enzymatic digestion (Trypsin, endoprotease Lys-C, papain). The light chains demonstrated the expected sequences. The heavy chains yielded post-translational modifications previously reported for other recombinant humanized or human IgG1 such as N-terminal pyroglutamic acid, C-terminal lysine clipping and N-glycosylation for asparagine 297. More surprisingly, two-thirds of the 7H2HM heavy chains were shown to contain an additional 24-amino-acid sequence, corresponding to the translation of an intron located between the variable and the constant domains. Taken together these data suggest that 7H2HM is a mixture of three families of antibodies corresponding (i) to the expected structure (17%; 14,9297 Da; 1330 amino acids), (ii) a variant with a translated intron in one heavy chains (33%; 15,2878 Da; 1354 amino acids) and (iii) a variant with translated introns in two heavy chains (50%; 15,4459 Da; 1378 amino acids), respectively. RP-HPLC is not a commonly used chromatographic method to assess purity of monoclonal antibodies but unlike to SEC and SDS-PAGE, was able to show and to quantify the family of structures present in 7H2HM, which were also identified by peptide mapping, mass spectrometry and microsequencing.  相似文献   

6.
Fresh isolates of Actinobacillus actinomycetemcomitans produce bundle-forming fimbriae. The exact molecular mass of A. actinomycetemcomitans fimbrillin, a structural subunit of fimbriae, was determined by liquid chromatography-electrospray ionization mass spectrometry. Three major molecular species with 6,226.0, 6,366.0, and 6,513.0 Da were detected in a purified fimbrial fraction from the strain 310-a. These molecular masses were significantly higher than the molecular weight (5,118 Da) calculated from nucleotide sequence data of the fimbrillin gene, flp, suggesting that the fimbrial peptides were post-translationally modified. Modification of the fimbrial peptides was also suggested by an N-terminal amino acid sequence analysis of fimbrillin peptic fragments, with the modified amino acids being due to seven serine or asparagine residues located in the C-terminal region. A periodate oxidation/biotin-hydrazide labeling assay of fimbrillin suggested that it might be glycosylated.  相似文献   

7.
Highly sensitive peptide fragmentation and identification in sequence databases is a cornerstone of proteomics. Previously, a two-layered strategy consisting of MALDI peptide mass fingerprinting followed by electrospray tandem mass spectrometry of the unidentified proteins has been successfully employed. Here, we describe a high-sensitivity/high-throughput system based on orthogonal MALDI tandem mass spectrometry (o-MALDI) and the automated recognition of fragments corresponding to the N- and C-terminal amino acid residues. Robotic deposition of samples onto hydrophobic anchor substrates is employed, and peptide spectra are acquired automatically. The pulsing feature of the QSTAR o-MALDI mass spectrometer enhances the low mass region of the spectra by approximately 1 order of magnitude. Software has been developed to automatically recognize characteristic features in the low mass region (such as the y1 ion of tryptic peptides), maintaining high mass accuracy even with very low count events. Typically, the sum of the N-terminal two ions (b2 ion), the third N-terminal ion (b3 ion), and the two C-terminal fragments of the peptide (y1 and y2) can be determined. Given mass accuracy in the low ppm range, peptide end sequencing on one or two tryptic peptides is sufficient to uniquely identify a protein from gel samples in the low silver-stained range.  相似文献   

8.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

9.
The immature core protein (p23, residues 1 to 191) of hepatitis C virus undergoes posttranslational modifications including intramembranous proteolysis within its C-terminal signal sequence by signal peptide peptidase to generate the mature form (p21). In this study, we analyzed the cleavage site and other amino acid modifications that occur on the core protein. To produce the posttranslationally modified core protein, we used a baculovirus-insect cell expression model system. As previously reported, p23 is processed to form p21 in insect as well as in mammalian cells. p21 was found to be associated with the cytoplasmic membrane, and its significant portion behaved as an integral membrane protein. The protein was purified from the membrane by a simple and unique procedure on the basis of its membrane-binding properties and solubility in detergents. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of purified p21 showed that the average molecular mass (m/z 19,307) of its single-charged ion differs by m/z 1,457 from that calculated for p23. To determine the posttranslational modifications, tryptic p21 peptides were analyzed by MALDI-TOF MS. We found three peptides that did not match the theoretically derived peptides of p23. Analysis of these peptides by MALDI-TOF tandem MS revealed that they correspond to N-terminal peptides (residues 2 to 9 and 2 to 10) starting with alpha-N-acetylserine and C-terminal peptide (residues 150 to 177) ending with phenylalanine. These results suggest that the mature core protein (molecular mass of 19,306 Da) includes residues 2 to 177 and that its N terminus is blocked with an acetyl group.  相似文献   

10.
J W Taylor 《Biochemistry》1990,29(22):5364-5373
Two peptide models of dynorphin A(1-17) have been synthesized. These peptides incorporate a minimally homologous substitute sequence for residues 6-17, including alternating lysine and valine residues substituting for the potential amphiphilic beta-strand structure in positions 7-15. Model 1 retains Pro10 from the native sequence, but model 2 does not. Compression isotherms of peptide monolayers at the air-water interface and CD spectra of peptide films adsorbed from aqueous solution onto siliconized quartz slides were evaluated by comparison to those of idealized amphiphilic alpha-helical, beta-sheet, and disordered peptides. Dynorphin A(1-17) was mostly disordered, whereas beta-endorphin was alpha helical. Dynorphin model 1 had properties similar to those of dynorphin A(1-17) at these interfaces, but model 2 formed strongly amphiphilic beta sheets. In binding assays to mu-, delta-, and kappa-opioid receptors in guinea pig brain membranes, model 1 reproduced the high potency and selectivity of dynorphin A(1-17) for kappa receptors, and model 2 was only 3 times less potent and less selective for these receptors. Both peptide models retained the high, kappa-selective agonist activity of dynorphin A(1-17) in guinea pig ileum assays, and like dynorphin A(1-17), model 1 had little activity in the rat vas deferens assay. In view of the minimal homology of the modeled dynorphin structures, these studies support current models of membrane-catalyzed opioid ligand-receptor interactions and suggest a role for the amphiphilic alpha-helical and beta-strand structures in beta-endorphin and dynorphin A(1-17), respectively, in this process.  相似文献   

11.
Following incubation of [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9) with suspensions of guinea pig brain membranes, analysis of the supernatants by HPLC has shown that both peptides are degraded at 25 degrees C and at 0 degrees C. Bestatin and captopril reduce degradation at 0 degrees C but for a similar degree of protection at 25 degrees C arginine-containing dipeptides are also required. The effects of these peptidase inhibitors on the degradation profiles indicate that [3H]dynorphin A (1-8) has three main sites of cleavage: the Tyr1-Gly2, Arg6-Arg7, and Leu5-Arg6 bonds. With [3H]dynorphin A (1-9) as substrate the Arg7-Ile8 and Ile8-Arg9 bonds are also liable to cleavage. In binding assays, in contrast to the effects of peptidase inhibitors on the degradation of unbound [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9), bestatin and captopril have little effect on the binding characteristics of the tritiated dynorphin A fragments at the kappa-site at 0 degrees C. However, at 25 degrees C binding is low in the absence of peptidase inhibitors. When binding at mu- and delta-sites is prevented, the maximal binding capacities of [3H]dynorphin A (1-8), [3H]dynorphin A (1-9), and [3H](-)-bremazocine at the kappa-site are similar; [3H]dynorphin A (1-9) has 5-10 times higher affinity for the kappa-site than [3H]dynorphin A (1-8). Comparison of the effects of peptidase inhibitors on unbound dynorphin A fragments with their effects in binding assays suggests that the bound peptides are protected from the action of peptidases.  相似文献   

12.
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.  相似文献   

13.
We previously described a method of quantitating levels of peptides in Cpe(fat)/Cpe(fat) mice using affinity chromatography to isolate peptide-processing intermediates and differential isotopic labeling/mass spectrometry. In the present study, we compared two different isotopic labels, acetic anhydride and succinic anhydride for detection and quantitation of peptides in wild type mice. As previously found for acetic anhydride, succinic anhydride efficiently labels all primary amines in various peptides. Of these two reagents, succinic anhydride provides better resolution between the heavy and light peaks of the labelled peptides due to a greater mass difference between the deuterated (heavy) and non-deuterated (light) form of this label (4 Da for succinate, 3 Da for acetate). Using succinic anhydride labeling, the accuracy of measuring 1:1 and 1:2 ratios of peptides in pituitary extracts was within 5% of the theoretical value for most peptides. The accuracy with succinic anhydride is comparable to the accuracy of acetic anhydride and more peptides could be detected and quantitated with succinic anhydride. The two labels were then used to examine pituitary peptides in mice with a defect in copper transport (Atp7a mice) vs wild type mice. Using succinic anhydride, 13 peptides could be detected, 12 of which matched the theoretical mass of known pituitary peptides. Five of the six peptides which contain C-terminal amide groups were significantly decreased in the Atp7a mice relative to wild type mice, whereas only one non-amidated peptide was significantly decreased in Atp7a mice. With acetic anhydride, only five peptides could be quantitated. The three peptides which contain C-terminal amide groups were decreased approximately 30% in the Atp7a mice. The selective decrease in amidated peptides in Atp7a mice is consistent with the copper-requirement of the enzyme that forms C-terminal amides.  相似文献   

14.
A large and steadily growing subfamily of antimicrobially active peptides of animals and plants is formed by the defensins, which are highly disulfide-bonded, cationic peptides with a molecular mass of about 4 kDa. The synthesis of the human beta-defensins 1 and 2 (hBD-1, hBD-2) as well as of the novel murine beta-defensins 7 and 8 (mBD-7 and mBD-8) is reported. The peptides were synthesized by solid-phase peptide synthesis using fluorenylmethoxycarbonyl chemistry. The linear products were oxidized in the presence of the cysteine/cystine redox system to the biologically active molecules. The correct disulfide connectivity of the resulting cyclic products was partly verified by mass spectrometry and sequence analysis of the fragments obtained after tryptic cleavage. In addition, the recently discovered antimicrobially active human peptide LEAP-1/hepcidin, which contains four disulfide bonds, was successfully synthesized and subsequently oxidized. For Liver-expressed anti microbial peptide (LEAP)-1/hepcidin and hBD-1, the identity of native and synthetic peptides was demonstrated by high-pressure liquid chromatography and capillary electrophoretic analysis. The general synthetic procedure is suitable to rapidly perform the total chemical synthesis of novel fully bioactive defensins, which are expected to be identified soon, as well as of structurally modified analogs.  相似文献   

15.
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.  相似文献   

16.
Various post-translational modifications (PTMs) of pilin in Synechocystis sp. PCC 6803 have been proposed. In this study, we investigated previously unidentified PTMs of pilin by mass spectrometry (MS). MALDI-TOF MS and TOF/TOF MS showed that the molecular mass of the C-terminal lysine of pilin was increased by 42 Da, which could represent acetylation (ΔM = 42.0470) or trimethylation (ΔM = 42.0106). To discriminate between these isobaric modifications, the molecular mass of the C-terminal tryptic peptide was measured using 15T Fourier transform ion cyclotron resonance (FT-ICR) MS. The high magnetic field FT-ICR provided sub-ppm mass accuracy, revealing that the C-terminal lysine was modified by trimethylation. We could also detect the existence of mono- and di-methylation of the C-terminal lysine. Cells expressing a pilin point mutant with glutamine replacing the C-terminal lysine showed dramatically reduced motility and short pili. These findings suggest that trimethylation of pilin at the C-terminal lysine may be essential for the biogenesis of functional pili.  相似文献   

17.
BackgroundDynorphin 1–17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1–17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1–17 and fragments (1–6, 1–7 and 1–9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1–7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund’s Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1–7, 1–17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1–7 and 1–9 displayed the greatest activity across all receptor subtypes, while dynorphin 1–7, 1–9 and 1–17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1–7 and U50488H, but not dynorphin 1–17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1–7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1–7 mediates analgesia.  相似文献   

18.
Rao S  Aberg F  Nieves E  Band Horwitz S  Orr GA 《Biochemistry》2001,40(7):2096-2103
The extensive C-terminal molecular heterogeneity of alpha- and beta-tubulin is a consequence of multiple isotypes, the products of distinct genes, that undergo several posttranslational modifications. These include polyglutamylation and polyglycylation of both subunits, reversible tyrosination and removal of the penultimate glutamate from alpha-tubulin, and phosphorylation of the beta III isotype. A mass spectrometry-based method has been developed for the analysis of the C-terminal diversity of tubulin from human cell lines. Total cell extracts are resolved by SDS--PAGE and transferred to nitrocellulose, and the region of the blot corresponding to tubulin (approximately 50 kDa) was excised and digested with CNBr to release the highly divergent C-terminal tubulin fragments. The masses of the human alpha- and beta-tubulin CNBr-derived C-terminal peptides are all in the 1500--4000 Da mass range and can be analyzed directly by MALDI-TOF mass spectrometry in the negative ion mode without significant interference from other released peptides. In this study, the tubulin isotype diversity in MDA-MB-231, a human breast carcinoma cell line, and A549, a human non-small lung cancer cell line, is reported. The major tubulin isotypes present in both cell lines are k-alpha 1 and beta 1. Importantly, we report a previously unknown alpha isotype present at significant levels in both cell lines. Moreover, the degree of posttranslational modifications to all isotypes was limited. Glu-tubulin, in which the C-terminal tyrosine of alpha-tubulin is removed, was not detected. In contrast to mammalian neuronal tubulin which exhibits extensive polyglutamylation, only low-level monoglutamylation of the k-alpha 1 and beta 1 isotypes was observed in these two human cell lines.  相似文献   

19.
A highly specific proteinase, converting dynorphin A (1-17) to enkephalins, was isolated from the human spinal cord and subjected to further characterization. The enzyme was found to be a thiol-dependent protein with a relative molecular mass of 50 kDa and a pH optimum between 5.0 and 5.5. This proteinase appears to exclusively convert dynorphin A (1-17) to Leu-enkephalin and its COOH-terminal extensions Leu-enkephalin-Arg6 (which was a major conversion product) and Leu-enkephalin-Arg6-Arg7 but not the other prodynorphin- or proenkephalin-derived peptides. This high specificity toward a single structure is suggested to be involved in a distinct processing pathway associated with the generation of the opioid peptides with selectivity for delta-opioid receptors.  相似文献   

20.
We recently isolated from pig intestine and characterized a 31-residue antibacterial peptide named cecropin-P1 with activity against Escherichia coli and several other Gram-negative bacteria. The isolation involved a number of batch-wise steps followed by several chromatography steps. The continued investigation of these antibacterial peptides has now yielded another antibacterial peptide with high activity against both E. coli and Bacillus megaterium. Amino acid analysis showed a very high content of proline (49 mol%) and arginine (26 mol%), an intermediate level of phenylalanine and low levels of leucine, tyrosine, isoleucine, and glycine. The primary structure was determined by a combination of Edman degradation, plasma desorption mass spectrometry and C-terminal sequence analysis by carboxypeptidase Y degradation using capillary zone electrophoresis for detection of liberated residues. The calculated molecular mass was 4719.7 Da, which is in excellent agreement with 4719 Da obtained by plasma desorption mass spectrometry. The peptide was named PR-39 (proline-arginine-rich with a size of 39 residues). The lethal concentration of the peptide was determined against six Gram-negative and four Gram-positive strains of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号