首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid 21-hydroxylase activity has been identified in many tissues, including liver. But it is possible that the enzyme found in the liver is different from adrenal 21-hydroxylase. In the adrenal cortex, steroid 21-hydroxylase activity is increased by corticotropin (ACTH); the effect of ACTH is mediated by cyclic AMP (cAMP), and presumably involves a cAMP-dependent protein kinase (PKA). It is not yet clear, however, how extra-adrenal steroid 21-hydroxylase activity is regulated. In the present study, we examined the effect of N6, 2′-O-dibutyryl adenosine 3′,5′-cyclic monophosphate (dbcAMP), forskolin, N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide (H-8) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on steroid 21-hydroxylase activity in primary cultures of rat hepatocytes to determine the nature of regulation of extra-adrenal steroid 21-hydroxylase activity. Steroid 21-hydroxylase activity in hepatocytes incubated with 10−11M dbcAMP for 24 h was 1.6 times higher than that in control hepatocytes untreated with dbcAMP. On the other hand, steroid 21-hydroxylase activity decreased by 20 and 50% when the cells were incubated with 10−5 and 10−3 M dbcAMP, respectively. The stimulatory effect of 10−11 M dbcAMP was not blocked by 10−5 M H-8 (PKA inhibitor), but the inhibitory effect of 10−5 or 10−3 M cAMP was. TPA did not alter the activity of steroid 21-hydroxylase. These findings indicate that the steroid 21-hydroxylase in rat liver is regulated by mechanisms different from those in the adrenal glands.  相似文献   

2.
The acute effects of ethylcholine mustard aziridinium ion (AF64A) and hemicholinium-3 (HC-3) on the release of endogenous acetylcholine (ACh) from isolated tissues were examined. Whereas addition of HC-3 (10−6–10−5 M) significantly reduced the output of ACh from isolated guinea-pig ileum longitudinal muscle strip elicited by 10 Hz stimulation, AF64A had no effect and even enhanced the release of radiolabel elicited by 1 Hz stimulation when this tissue was pre-loaded with [3H]choline. Similarly, HC-3 (10−5 M) reduced ouabain-induced endogenous ACh release from isolated rat hippocampus. Addition of AF64A (10−5−5 × 10−5 M) caused a slight increase in ACh release. In isolated rat cortex, however, AF64A did not affect ACh release. Moreover, AF64A caused a decrease in ouabain-stimulated ACh release from striatum. The present study indicates that: (a) the in vitro actions of AF64A differ from those of HC-3 and (b) the acute effects of AF64A on endogenous ACh release vary, depending on the tissues studied and the stimulation parameters used.  相似文献   

3.
B. Cheng  M. Williams  B. Chance 《FEBS letters》1983,160(1-2):169-172
Glucose and anoxia accelerate the photocount due to luminescence of Ehrlich Ascites cells. Adriamycin also has this effect if glucose is present. Comparison with a chemical standard combined with estimates of cellular and population transmittance yield a photon generation rate of at least 10.s−1.cell−1 in the presence of 10−2 M glucose, and twice this with anoxic conditions or 10−5 M adriamycin. Effects of adriamycin on Ehrlich Ascites cell respiration may depend on the presence of glucose.  相似文献   

4.
We previously demonstrated that the oxysterol potentiation of arachidonic acid release and prostaglandin biosynthesis induced by foetal calf serum activation of normal rat kidney (NRK) cells (fibroblastic clone 49F) was not related to a direct effect of oxysterols on cell free Ca2+ level. Since both Ca2+ variations and protein C are involved in arachidonic acid release in some models, we looked for a possible modulation by protein C in the oxysterol effect on arachidonic acid release. We show that when the phorbol ester 12-O-tetradecanoyl-phorbol-13acetate (TPA), a protein kinase C activator, was added to the culture medium, the oxyterol effect on arachidonic acid release and prostaglandin synthesis clearly increased. Moreover, the effect of TPA was dose-dependent and TPA EC50 (4 × 10−9 M) was unchanged in the presence of the oxysterol. Preincubation of cells with TPA for 24 h prevented the arachidonic acid release induced by TPA alone, whereas the oxysterol effect was decreased but not abolished. In the absence of serum, TPA and ionomycin added together induced the same noticeable (arachidonic acid) release and PGE2 synthesis as serum alone. Nevertheless, the potentiating effect of cholest-5-ene-3β,25-diol was much higher when serum itself was used to activate NRK cells than it was in the present serum-mimicking experimental conditions. Thus, the presence of growth factors is probably required to obtain a full oxysterol effect. We conclude that the oxysterol effect was synergistic with, but not fully dependent on, protein kinase C and Ca2+ ion fluxes, therefore oxysterols could affed earlier events triggered by serum growth factor binding to their cell membrane receptors.  相似文献   

5.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

6.
Orexins-A and B are two novel hypothalamic peptides, which, like leptin and neuropeptide-Y (NPY), are involved in the central regulation of feeding. Since leptin and NPY were found to modulate adrenal function, we have examined whether orexins are able to directly affect rat adrenal steroid secretion. Both orexin-A and orexin-B raised basal corticosterone secretion of dispersed rat zona fasciculata–reticularis (ZF/R) cells, their maximal effective concentration being 10−8 M. In contrast, orexins did not affect either maximally ACTH (10−9 M)-stimulated corticosterone production by ZF/R cells or the basal and agonist-stimulated aldosterone secretion of dispersed zona glomerulosa cells. The ACTH-receptor antagonist corticotropin-inhibiting peptide (10−6 M) annulled corticosterone response of ZF/R cells to ACTH (10−9 M), but not to orexins (10−8 M). Orexins (10−8 M) enhanced cyclic-AMP release by ZF/R cells, and the selective inhibitor of protein-kinase A (PKA) H-89 (10−5 M) abolished corticosterone responses to both ACTH (10−9 M) and orexins (10−8 M). A subcutaneous injection of both orexins (5 or 10 nmol/kg) evoked a clear-cut increase in the plasma concentration of corticosterone (but not aldosterone), the effect of orexin-A being significantly more intense than that of orexin-B. Collectively, these findings suggest that orexins exert a selective and direct glucocorticoid secretagogue action on the rat adrenals, acting through a receptor-mediated activation of the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

7.
The rat pineal gland is known to release melatonin in response to noradrenergic stimulation. Since vasopressin (VP)- and oxytocin (OT)-containing fibers innervate the pineal gland, the effects of VP and OT on melatonin release from perifused rat pineal glands were investigated. VP (10−7 M) and OT (10−6 M) decreased the basal melatonin secretion. No dose-dependent effect was observed. At high concentrations (10−5) these peptides potentiated the isoproterenol-induced increase of melatonin secretion. Below 10−5 M no potentiation was observed. Fragments of VP {[pGlu4,Cys6]VP(4–9)} and OT {[pGlu4,Cys6]OT(4–9)} did not display any effect on the isoproterenol-induced melatonin secretion.  相似文献   

8.
《FEBS letters》1994,340(3):226-230
The effects of synthetic rat adrenomedullin (rAM), a novel vasorelaxant peptide originally isolated from human pheochromocytoma, on receptor binding and cAMP generation were studied in cultured rat vascular smooth muscle cells (VSMC). A binding study using [125I]rAM revealed the presence of a single class of high-affinity (Kd1.3 × 10−8 M) binding sites for rAM in VSMC. The apparent Ki of rat calcitonin gene-related peptide (rCGRP) was 3 × 10−7 M. Affinity labeling of VSMC membranes with [125I]rAM revealed two distinct labeled bands with apparent molecular weights of 120 and 70 kDa, both of which were abolished by excess unlabeled rAM or rCGRP. rAM stimulated cAMP formation with an approximate EC50 of 10−8 M, the effect of which was additive with isoproterenol, but not with rCGRP. The rAM-induced cAMP response was unaffected by propranalol, indomethacin, or quinaerine, but inhibited by a CGRP receptor antagonist, human CGRP[8–37]. These data suggest that VSMC possesses specific AM receptors functionally coupled to adenylate cyclase with which CGRP interacts.  相似文献   

9.
Perivascular nerve stimulation of rat livers perfused in situ with erythrocyte-free Krebs-Henseleit buffer at constant pressure in a non-recirculating system resulted in an increase of glucose and lactate production and in a decrease of portal flow. Infusion of somatostatin in different concentrations (2 × 10−7, 10−8, 10−9 mol·l−1) reduced the nerve-mediated activation of glucose release maximally to 66%. There was only a slight effect on the lactate output, the nerve-mediated reduction of portal flow was unaltered. In controls, somatostatin alone had no effect on the metabolic and hemodynamic parameters. In order to differentiate between a presynaptic and postsynaptic mechanism, the noradrenaline overflow was calculated. The unaltered release of the neurotransmitter in the presence or absence of somatostatin excluded a presynaptic mechanism. To mimic the nerve effects on the carbohydrate metabolism and on the hemodynamics, noradrenaline (2 × 10−7 mol·l−1) was infused instead of the nerve stimulation over a period of 5 min. Somatostatin did not change the endocrine effects of the catecholamine under these conditions. The nerve-dependent effect of somatostatin suggests that other neurotransmitters (e.g. VIP) or mediators (e.g. prostanoids) may be influenced by somatostatin.  相似文献   

10.
In the present paper, the modulation of the basolateral membrane (BLM) Na+-ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1–7) (Ang-(1–7)) was evaluated. Ang II and Ang-(1–7) inhibit the Na+-ATPase activity in a dose-dependent manner (from 10−11 to 10−5 M), with maximal effect obtained at 10−7 M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1–7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10−8 M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10−12–10−5 M) losartan or (10−10–10−7 M) A779, selective antagonists for AT1 and AT(1–7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3′,5′-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10−9 M guanosine 5′-O-(2-thiodiphosphate) (GDPβS; an inhibitor of the G protein activity), and mimicked by 10−10 M guanosine 5′-O-(3-thiotriphosphate) (GTPγS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10−10–10−6 M) cAMP has a similar and non-additive effect to Ang II and Ang-(1–7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1–7); and (6) both angiotensins stimulate PKA activity.  相似文献   

11.
Palythoa psammophilia Walsh & Bowers has a well coordinated, stereotyped feeding response, the culminating step of which is ingestion; this may be elicited by the synergistic effect of the tripeptide glutathione and the -imino acid, proline. Either activator acting separately causes responses only at high concentrations (above 10−5 M for glutathione; above 10−4 M for proline) in a reduced number of animals and at a low rate (5.00 ± 1.73 min in 5 × 10−3 M solutions of glutathione; 11.10±3.74 min in 5 × 10−3 M solutions of proline). Highest percentages of response were obtained in combinations where glutathione was at a concentration of 5 × 10−3 M and proline at 5 × 10−4 M or in combinations of glutathione at concentrations 5 × 10−6 M and proline at 5 × 10−5 M. The speed of ingestion is considerably enhanced when these activators are combined (1.17±1.18 min).  相似文献   

12.
C. Görlach  M. Wahl 《Peptides》1996,17(8):1373-1378
Ring segments of rat middle cerebral artery (MCA) were prepared for measurement of isometric force and precontracted with 10−4 M uridine triphosphate (UTP). Concentration-effect curves (CEC) were constructed for bradykinin (BK, 10−8–10−5 M) in segments with functionally intect (E+) or denuded (E−) endothelium. E− segments did not dilate to BK. The BK receptor was characterized by application of specific B1 or B2 antagonists [des-Arg9-Leu8] BK (10−5 M) and [ -Arg0-Hyp3-Thi5- -Tic7-Oic8] BK (HOE140,3 × 10−7 M), respectively, or B1 agonist [des-Arg9] BK (10−8–10−4 M). Involvement of nitric oxide (NO) was tested with NG-nitro- -arginine (LNNA, 10−4 M). BK induced concentration-dependent relaxation with a maximal effect (Emax) of 40.86 ± 1.50% at 10−6 M and a pD2 (−log10 EC50) of 6.818 ± 0.044. This relaxation could be prevented with HOE140 or LNNA, but was not influenced by [des-Arg9-Leu8] BK. [des-Arg9] BK did not induce any effect. These results demonstrate that BK induced relaxation via endothelial B2 receptors and release of NO in isolated rat MCA.  相似文献   

13.
The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respectively. Atropine was added in concentrations of 10−9 or 10−7 M to evaluate the role of cholinergic mechanisms. In control experiments, vagal stimulation during luminal pH 2 elicited a significant increase of BLI secretion only at 10 Hz but not at 2 and 5 Hz. Somatostatin release was inhibited independent of the stimulation frequency employed. Gastrin secretion at 2 Hz was twice the secretion rates observed at 5 and 10 Hz, respectively. At luminal pH 7 BLI rose significantly at 5 and 10 Hz. SLI secrtion was decreased by all frequencies. Gastrin secretion at 2 and 5 Hz was twice as high as during stimulation with 10 Hz. Atropine at doses of 10−9, 10−8, 10−7 and 10−6 M had no effect on basal secretion of BLI, SLI and gastrin. At luminal pH 2, atropine increased dose-dependently the BLI response at 2 and 5 but not at 10 Hz. The decrease of SLI during 2 and 5 Hz but not 10 Hz was abolished by atropine 10−9 M. SLI was reversed to stimulation during atropine 10−7 M at all frequencies. The rise of gastrin at 2 Hz was reduced by 50%. At luminal pH 7, atropine had comparable effects with a few differences: the BLI response at 10 Hz was augmented and the gastrin response to 2 and 5 Hz was reduced. In conclusion the present data demonstrate a frequency and pH-dependent stimulation of BLI and gastrin release. The stimulation of BLI is predominantly due to atropine-insensitive mechanisms while muscarinic cholinergic mechanisms exert an inhibitory effect on BLI release during lower stimulation frequencies (2 and 5 Hz) independent of the intragastric pH and also during higher frequencies at neutral pH. Both, atropine sensitive and insensitive mechanisms are activated frequency dependent. The atropine-sensitive cholinergic mechanisms but not the noncholinergic mechanisms involved in regulation of G-cell function are pH and frequency dependent. Somatostatin is regulated largely independent of stimulation frequency and pH by at least two pathways involving cholinergic mechanisms of different sensitivity to atropine. These data suggest a highly differentiated regulation of BLI, gastrin and SLI secretion and the interaction between these systems awaits further elucidation.  相似文献   

14.
Generation of reactive oxygen species (ROS) induced by Ce4+ in suspension cultures of Taxus cuspidata was investigated. The burst of superoxide anions (O2) occurred rapidly after the addition of Ce4+ and reached maximum at 4.3 h, while the total level of the cellular reactive oxygen species maintained unchanged. The intracellular superoxide dismutase (SOD) and catalase (CAT) were activated while the intra/extracellular peroxidases (PODs) were inhibited accompanying the O2 burst. The pretreatment of the suspension cultures with diphenylene iodonium (DPI), a suicide inhibitor of the NADPH oxidase, blocked the O2 burst, inhibiting the cell apoptosis and taxol production induced by Ce4+. These results show that NADPH oxidase played a key role in O2 burst and O2 served as a mediator of Ce4+ for cell apoptosis and taxol production. The pretreatments of the suspension cultures with anthracene-9-carboxylate, an ion-channel blocker, nifedipine, a Ca2+-channel blocker, neomycin, a phospholipase C (PLC) inhibitor, or suramin, a G-protein inhibitor, decreased O2 burst induced by Ce4+. It is thus inferred that Ce4+-induced O2 burst, which mediated cell apoptosis and taxol production by activating the ion-channels, PLC, G-proteins and NADPH oxidase.  相似文献   

15.
A microbial biosensor, using Acetobacter pasteurianus cells and an oxygen electrode, was developed for the determination of lactic acid. The bacterial cells were retained on a nylon membrane and attached to the surface of the oxygen electrode. In view of response time, stability and sensitivity, the biosensor performed best at 26°C and in pH 6 phthalate buffer containing magnesium sulfate. The activity of the retained cells was stable for approximately 170 h and was regenerable. The biosensor exhibited a hyperbolic response to both D- and L-lactic acid in the range of 10−4 M to 25 × 10−3 M. However, in the range 10−4 M to 15 × 10−4 M the response was linear. The microbial biosensor was applicable for detecting lactate concentration in yogurt and milk, since it was not sensitive to lactose, sucrose and glucose — three major components of such dairy products.  相似文献   

16.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

17.
The authors incubated adrenal mitochondria to study the in vitro action of cortisol and testosterone on the transformation of corticosterone and 18-hydroxycorticosterone into aldosterone. The results show that cortisol at concentrations of 5 × 10−6 and 10−4 M inhibit the conversion of corticosterone into aldosterone by 23.6 to 90%; testosterone 5 × 10−5 and 10−4 M inhibit the reaction by 78.4 and 87.2%, respectively. The inhibition of the conversion of 18-hydroxycorticosterone into aldosterone is 12.5 to 91% by cortisol with concentrations ranging from 5 × 10−7 to 5 × 10−5 M and testosterone 5 × 10−5 and 10−4 M inhibits the reaction by 87.3 and 91%, respectively. Aldosterone (10−8 and 10−6 M) does not inhibit aldosterone biosynthesis from corticosterone or 18-hydroxycorticosterone. It thus appears that cortisol and testosterone have an effect on the aldosterone biosynthesis pathways in mitochondria. This action may be located at the binding site of the cytochrome P450 11β, which catalyzes all hydroxylation steps in the mineralocorticoid biosynthesis pathway. Because cortisol and testosterone may interfere with aldosterone biosynthesis, and since functional zonation is expected in adrenal carcinomas, the presence of these steroids in substantial amounts could explain the very low plasma aldosterone level usually observed, in adrenal carcinomas studies in our laboratory.  相似文献   

18.
VIP dose-dependently increased basal, but not submaximally ACTH (10−10 M)-stimulated, aldosterone (ALDO) and corticosterone (B) secretion of dispersed rat capsular and inner adrenocortical cells, respectively. The maximal stimulatory effect (60–70% rise) was obtained with a VIP concentration of 10−8 M. [4-Cl-D-Phe6,Leu17]-VIP, a VIP-receptor antagonist (VIP-A), and corticotropin inhibiting peptide (CIP), an ACTH receptor antagonist (both 10−6 M), completely annulled VIP (10−8M)-evoked rises in basal ALDO and corticosterone secretions. The ACTH (10−10 M)-enhanced (about 5-fold) production of both hormones was completely reversed by CIP (10−6 M) and only partially reduced (about −30%) by VIP-A (10−6 M). The hypothesis is advanced that the weak secretagogue effect of VIP on dispersed rat capsular and inner adrenocortical cells may be due to its positive interaction with ACTH receptors.  相似文献   

19.
Recently, we demonstrated that angiotensin-(1–7) (Ang-(1–7)) stimulates the Na+-ATPase activity through a losartan-sensitive angiotensin receptor, whereas bradykinin inhibits the enzyme activity through the B2 receptor [Regul. Pept. 91 (2000) 45; Pharmacol. Rev. 32 (1980) 1]. In the present paper, the effect of bradykinin (BK) on Ang-(1–7)-stimulated Na+-ATPase activity was evaluated. Preincubation of Na+-ATPase with 10−9 M Ang-(1–7) increases enzyme activity from 7.9±0.9 to 14.1±1.5 nmol Pi mg−1 min−1, corresponding to an increase of 79% (p<0.05). This effect is reverted by bradykinin in a dose-dependent manner (10−14–10−8 M), reaching maximal inhibitory effect at 10−9 M. Des-Arg9 bradykinin (DABK), an agonist of B1 receptor, at the concentrations of 10−9–10−7 M, does not mimic the BK inhibitory effect, and des-Arg9-[Leu8]-BK (DALBK), a B1 receptor antagonist, at the concentrations of 10−10–10−7 M, does not prevent the inhibitory effect of BK on Ang-(1–7)-stimulated enzyme. On the other hand, HOE 140, an antagonist of B2 receptor, abolishes the inhibitory effect of BK on the Ang-(1–7)-stimulated enzyme in a dose-dependent manner, reaching maximal effect at 10−7 M. Taken together, these data indicate that stimulation of B2 receptors by BK can counteract the stimulatory effect of Ang-(1–7) on the proximal tubule Na+-ATPase activity.  相似文献   

20.
Isolated rat hepatocytes posses a saturable glucocorticoid uptake system with high affinity (Kd value = 2.8 ± 0.7 × 10−8 M; 318,000 ± 80,000 binding sites per cell; 317 fmol/mg protein). The initial rates of uptake decrease by about 30–40% if the cells are incubated simultaneously with [3H]corticosterone and either SH-reagents (N-ethylmaleimide and p-chloromercuriphenylsulphonate, 1 mM), metabolic inhibitors (2,4-dinitrophenol, 1 mM; and antimycin, 0.1 mM) or the Na+/K+-ATPase-inhibitors, ouabain and quercetine. These Na+/K+-ATPase-blockers exert half-maximal inhibition at 3 × 10−7 and 3 × 10−6 M, respectively. A slight increase in K+ concentration and a corresponding decrease in Na+ in the medium leads to a significant reduction in the initial uptake rate. The uptake system from the rat hepatocytes shows a clear steroid specificity, being different from the intracellular receptor. Corticosterone and progesterone are the strongest competitors, cortisol, 5- and 5β-dihydrocorticosterone, 11-deoxycorticosterone, cortisone and testosterone have an intermediate effect and only weak competition is exerted by dexamethasone and by the mineralocorticoid, aldosterone. Estradiol and estrone sulphate as well as the synthetic glucocorticoid triamcinolone acetonide are unable to inhibit initial corticosterone uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号