首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By study of asymmetric membranes, models of the cell plasma membrane (PM) have improved, with more realistic properties of the asymmetric lipid composition of the membrane being explored. We used hemifusion of symmetric giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB) to engineer bilayer leaflets of different composition. During hemifusion, only the outer leaflets of GUV and SLB are connected, exchanging lipids by simple diffusion. aGUVs were detached from the SLB for study. In general these aGUVs are formed with one leaflet that phase-separates into Ld (liquid disordered) + Lo (liquid ordered) phases, and another leaflet with lipid composition that would form a single fluid phase in a symmetric bilayer. We observed that ordered phases of either Lo or Lβ (gel phase) induce an ordered domain in the apposed fluid leaflet that lacks high melting lipids. Results suggest both an inter-leaflet and an intra-leaflet redistribution of cholesterol. We used C-Laurdan spectral images to investigate the lipid packing/order of aGUVs, finding that cholesterol partitions into the induced ordered domains. We suggest this behavior to be commonplace, that when Ld + Lo phase separation occurs in a cell PM exoplasmic leaflet, an induced order domain forms in the cytoplasmic leaflet.  相似文献   

2.
Most antimicrobial peptides (AMPs) damage the cell membrane of bacterial cells and induce rapid leakage of the internal cell contents, which is a main cause of their bactericidal activity. One of the AMPs, magainin 2 (Mag), forms nanopores in giant unilamellar vesicles (GUVs) comprising phosphatidylcholine (PC) and phosphatidylglycerol (PG), inducing leakage of fluorescent probes. In this study, to elucidate the Mag-induced pore formation in lipid bilayer region in E. coli cell membrane, we examined the interaction of Mag with single GUVs comprising E. coli polar lipids (E. coli-lipid-GUVs). First, we investigated the Mag-induced leakage of a fluorescent probe AF488 from single E. coli-lipid-GUVs, and found that Mag caused rupture of GUVs, inducing rapid AF488 leakage. The rate constant of Mag-induced GUV rupture increased with the Mag concentration. Using fluorescence microscopy with a time resolution of 5 ms, we revealed the GUV rupture process: first, a small micropore was observed in the GUV membrane, then the pore radius increased within 50 ms without changing the GUV diameter, the thickness of the membrane at the pore rim concomitantly increased, and eventually membrane aggregates were formed. Mag bound to only the outer monolayer of the GUV before GUV rupture, which increased the area of the GUV bilayer. We also examined the physical properties of E. coli-lipid-GUVs themselves. We found that the rate constant of the constant tension-induced rupture of E. coli-lipid-GUVs was higher than that of PG/PC-GUVs. Based on these results, we discussed the Mag-induced rupture of E. coli-lipid-GUVs and its mechanism.  相似文献   

3.
The effect of detergents on giant unilamellar vesicles (GUVs) composed of phosphatidylcholine, sphingomyelin and cholesterol and containing liquid-ordered phase (l(o)) domains was investigated. Such domains have been used as models for the lipid rafts present in biological membranes. The studied detergents included lyso-phosphatidylcholine, the product of phospholipase A2 activity, as well as Triton X-100 and Brij 98, i.e. detergents used to isolate lipid rafts as DRMs. Local external injection of each of the three detergents at subsolubilizing amounts promoted exclusion of l(o) domains from the GUV as small vesicles. The budding and fission processes associated with this vesiculation were interpreted as due to two distinct effects of the detergent. In this framework, the budding is caused by the initial incorporation of the detergent in the outer membrane leaflet which increases the spontaneous curvature of the bilayer. The fission is related to the inverted-cone molecular shape of the detergent which stabilizes positively curved structures, e.g. pores involved in vesicle separation. On the other hand, we observed in GUVs neither domain formation nor domain coalescence to be induced by the addition of detergents. This supports the idea that isolation of DRM from biological membranes by detergent-induced extraction is not an artifact. It is also suggested that the physico-chemical mechanisms involved in l(o) domain budding and fission might play a role in rafts-dependant endocytosis in cells.  相似文献   

4.
《Biophysical journal》2020,118(1):57-69
Cell-penetrating peptides (CPPs) can translocate across plasma membranes to enter the cytosol of eukaryotic cells without decreasing cell viability. We revealed the mechanism underlying this translocation by examining the effect of membrane potential, φm, on the entry of a CPP, transportan 10 (TP10), into the lumen of single giant unilamellar vesicles (GUVs). For this purpose, we used the single GUV method to detect the entry of carboxyfluorescein (CF)-labeled TP10 (CF-TP10) into the lumen of single GUVs. First, we used various K+ concentration differences to apply different negative membrane potentials on single GUVs containing gramicidin A in their membrane and confirmed these potentials using the φm-sensitive fluorescent probe 3,3′-dihexyloxacarbocyanine iodine. The fluorescence intensity of the GUV membranes (i.e., the rim intensity) due to 3,3′-dihexyloxacarbocyanine iodine increased with |φm| up to 118 mV, and its dependence on |φm| less than 28 mV agreed with a theoretical estimation (i.e., the dye concentration in the inner leaflet of a GUV is larger than that in the outer leaflet according to the Boltzmann distribution). We then examined the effect of φm on the entry of CF-TP10 into GUVs using single GUVs containing small GUVs or large unilamellar vesicles inside the mother GUV lumen. We found that CF-TP10 entered the GUV lumen without pore formation and the rate of entry of CF-TP10 into the GUV lumen, Ventry, increased with an increase in |φm|. The rim intensity due to CF-TP10 increased with an increase in |φm|, indicating that the CF-TP10 concentration in the inner leaflet of the GUV increased with |φm|. These results indicate that the φm-induced elevation in Ventry can be explained by the increase in CF-TP10 concentration in the inner leaflet with |φm|. We discuss the mechanism underlying this effect of membrane potential based on the pre-pore model of the translocation of CF-TP10 across a GUV membrane.  相似文献   

5.
Membrane fusion is a ubiquitous process in biology and is a prerequisite for many intracellular delivery protocols relying on the use of liposomes as drug carriers. Here, we investigate in detail the process of membrane fusion and the role of opposite charges in a protein-free lipid system based on cationic liposomes (LUVs, large unilamellar vesicles) and anionic giant unilamellar vesicles (GUVs) composed of different palmitoyloleoylphosphatidylcholine (POPC)/palmitoyloleoylphosphatidylglycerol (POPG) molar ratios. By using a set of optical-microscopy- and microfluidics-based methods, we show that liposomes strongly dock to GUVs of pure POPC or low POPG fraction (up to 10 mol%) in a process mainly associated with hemifusion and membrane tension increase, commonly leading to GUV rupture. On the other hand, docked LUVs quickly and very efficiently fuse with negative GUVs of POPG fractions at or above 20 mol%, resulting in dramatic GUV area increase in a charge-dependent manner; the vesicle area increase is deduced from GUV electrodeformation. Importantly, both hemifusion and full fusion are leakage-free. Fusion efficiency is quantified by the lipid transfer from liposomes to GUVs using fluorescence resonance energy transfer (FRET), which leads to consistent results when compared to fluorescence-lifetime-based FRET. We develop an approach to deduce the final composition of single GUVs after fusion based on the FRET efficiency. The results suggest that fusion is driven by membrane charge and appears to proceed up to charge neutralization of the acceptor GUV.  相似文献   

6.
Single giant unilamellar vesicles (GUVs) rupture spontaneously from their salt-laden suspension onto solid surfaces. At hydrophobic surfaces, the GUVs rupture via a recurrent, bouncing ball rhythm. During each contact, the GUVs, rendered tense by the substrate interactions, porate, and spread a molecularly transformed motif of a monomolecular layer on the hydrophobic surface from the point of contact in a symmetric manner. The competition from pore closure, however, limits the spreading and produces a daughter vesicle, which re-engages with the substrate. At solid hydrophilic surfaces, by contrast, GUVs rupture via a distinctly different recurrent burst-heal dynamics; during burst, single pores nucleate at the contact boundary of the adhering vesicles, facilitating asymmetric spreading and producing a “heart”-shaped membrane patch. During the healing phase, the competing pore closure produces a daughter vesicle. In both cases, the pattern of burst-reseal events repeats multiple times, splashing and spreading the vesicular fragments as bilayer patches at the solid surface in a pulsatory manner. These remarkable recurrent dynamics arise, not because of the elastic properties of the solid surface, but because the competition between membrane spreading and pore healing, prompted by the surface-energy-dependent adhesion, determine the course of the topological transition.  相似文献   

7.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

8.
We have succeeded in controlling tubular membrane formations in binary giant unilamellar vesicles (GUVs) using a simple temperature changing between the homogeneous one-phase region and the two-phase coexistence region. The binary GUV is composed of inverse-cone (bulky hydrocarbon chains and a small headgroup) and cylinder-shaped lipids. When the temperature was set in the two-phase coexistence region, the binary GUV had a spherical shape with solidlike domains. By increasing the temperature to the homogeneous one-phase region, the excess area created by the chain melting of the lipid produced tubes inside the GUV. The tubes had a radius on the micrometer scale and were stable in the one-phase region. When we again decreased the temperature to the two-phase coexisting region, the tubes regressed and the GUVs recovered their phase-separated spherical shape. We infer that the tubular formation was based on the mechanical balance of the vesicle membrane (spontaneous tension) coupled with the asymmetric distribution of the inverse-cone-shaped lipids between the inner and outer leaflets of the vesicle (lipid sorting).  相似文献   

9.
Johnson JM  Ha T  Chu S  Boxer SG 《Biophysical journal》2002,83(6):3371-3379
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.  相似文献   

10.
A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.  相似文献   

11.
We have succeeded in controlling tubular membrane formations in binary giant unilamellar vesicles (GUVs) using a simple temperature changing between the homogeneous one-phase region and the two-phase coexistence region. The binary GUV is composed of inverse-cone (bulky hydrocarbon chains and a small headgroup) and cylinder-shaped lipids. When the temperature was set in the two-phase coexistence region, the binary GUV had a spherical shape with solidlike domains. By increasing the temperature to the homogeneous one-phase region, the excess area created by the chain melting of the lipid produced tubes inside the GUV. The tubes had a radius on the micrometer scale and were stable in the one-phase region. When we again decreased the temperature to the two-phase coexisting region, the tubes regressed and the GUVs recovered their phase-separated spherical shape. We infer that the tubular formation was based on the mechanical balance of the vesicle membrane (spontaneous tension) coupled with the asymmetric distribution of the inverse-cone-shaped lipids between the inner and outer leaflets of the vesicle (lipid sorting).  相似文献   

12.
We assayed fusion events between giant unilamellar vesicles (GUVs) and budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus), the envelopes of which have been labeled with the fluorescent dye Alexa Fluor 488. This involves observing the intensity of fluorescence emitted from the lipid bilayer of single GUVs after fusion using laser scanning microscopy. Using this assay system, we found that fusion between single GUVs and BV envelopes was significantly enhanced at around pH 5.0-6.0, which suggests that: (1) envelope glycoprotein GP64-mediated membrane fusion within the endosome of insect cells was reproduced in our artificial system; (2) acidic phospholipids in GUVs are necessary for this fusion, which are in agreement with the previous results with conventional small liposomes including large unilamellar vesicles and multilamellar vesicles; and (3) the efficiency of fusion is significantly affected by membrane properties that can be modulated by adding cholesterol to GUV lipid bilayers. In addition, the microscopic observation of BV-fused single GUVs showed that a weak interaction occurred between BVs and GUVs containing dioleoylphosphatidylserine at pH 6.0-6.5, and components of BV envelopes were unevenly distributed upon fusion with GUVs containing saturated phospholipid with cholesterol. We further demonstrated that when the recombinant membrane protein, adrenergic β2 receptor, was expressed on recombinant BV envelopes, the protein distribution on BV-fused GUVs was also affected by their lipid contents.  相似文献   

13.
Supported lipid bilayers (SLB) are important for the study of membrane-based phenomena and as coatings for biosensors. Nevertheless, there is a fundamental lack of understanding of the process by which they form from vesicles in solution. We report insights into the mechanism of SLB formation by vesicle adsorption using temperature-controlled time-resolved fluorescence microscopy at low vesicle concentrations. First, lipid accumulates on the surface at a constant rate up to ∼0.8 of SLB coverage. Then, as patches of SLB nucleate and spread, the rate of accumulation increases. At a coverage of ∼1.5 × SLB, excess vesicles desorb as SLB patches rapidly coalesce into a continuous SLB. Variable surface fluorescence immediately before SLB patch formation argues against the existence of a critical vesicle density necessary for rupture. The accelerating rate of accumulation and the widespread, abrupt loss of vesicles coincide with the emergence and disappearance of patch edges. We conclude that SLB edges enhance vesicle adhesion to the surface and induce vesicle rupture, thus playing a key role in the formation of continuous SLB.  相似文献   

14.
We have developed a strategy for preparing tethered lipid bilayer membrane patches on solid surfaces by DNA hybridization. In this way, the tethered membrane patch is held at a controllable distance from the surface by varying the length of the DNA used. Two basic strategies are described. In the first, single-stranded DNA strands are immobilized by click chemistry to a silica surface, whose remaining surface is passivated to prevent direct assembly of a solid supported bilayer. Then giant unilamellar vesicles (GUVs) displaying the antisense strand, using a DNA–lipid conjugate developed in earlier work [Chan, Y.-H.M., van Lengerich, B., et al., 2008. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3 (2), FA17–FA21], are allowed to tether, spread and rupture to form tethered bilayer patches. In the second, a supported lipid bilayer displaying DNA using the DNA–lipid conjugate is first assembled on the surface. Then GUVs displaying the antisense strand are allowed to tether, spread and rupture to form tethered bilayer patches. The essential difference between these methods is that the tethering hybrid DNA is immobile in the first, while it is mobile in the second. Both strategies are successful; however, with mobile DNA hybrids as tethers, the patches are unstable, while in the first strategy stable patches can be formed. In the case of mobile tethers, if different length DNA hybrids are present, lateral segregation by length occurs and can be visualized by fluorescence interference contrast microscopy making this an interesting model for interactions that occur in cell junctions. In both cases, lipid mobility is high and there is a negligible immobile fraction. Thus, these architectures offer a flexible platform for the assembly of lipid bilayers at a well-defined distance from a solid support.  相似文献   

15.
We have studied the dynamics of Lissamine Rhodamine B dye sensitization-induced oxidation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs), where the progression of the underlying chemical processes was followed via vesicle membrane area changes. The surface-area-to-volume ratio of our spherical GUVs increased after as little as ten seconds of irradiation. The membrane area expansion was coupled with high amplitude fluctuations not typical of GUVs in isoosmotic conditions. To accurately measure the area of deformed and fluctuating membranes, we utilized a dual-beam optical trap (DBOT) to stretch GUV membranes into a geometrically regular shape. Further oxidation led to vesicle contraction, and the GUVs became tense, with micron-scale pores forming in the bilayer. We analyzed the GUV morphological behaviors as two consecutive rate-limiting steps. We also considered the effects of altering DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhDPPE) concentrations. The resulting kinetic model allows us to measure how lipid molecular area changes during oxidation, as well as to determine the rate constants controlling how quickly oxidation products are formed. Controlled membrane oxidation leading to permeabilization is also a potential tool for drug delivery based on engineered photosensitizer-containing lipid vesicles.  相似文献   

16.
Antimicrobial peptide PGLa induces the leakage of intracellular content, leading to its bactericidal activity. However, the elementary process of PGLa-induced leakage remains poorly understood. Here, we examined the interaction of PGLa with lipid bilayers using the single giant unilamellar vesicle (GUV) method. We found that PGLa induced membrane permeation of calcein from GUVs comprised of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) and its rate increased with time to reach a steady value, indicating that PGLa induced pores in the bilayer. The binding of PGLa to the GUV membrane raised its fractional area change, δ. At high PGLa concentrations, the time course of δ showed a two-step increase; δ increased to a value, δ1, which was constant for an extended period before increasing to another constant value, δ2, that persisted until aspiration of the GUV. To reveal the distribution of PGLa, we investigated the interaction of a mixture of PGLa and carboxyfluorescein (CF) -labeled PGLa (CF-PGLa) with single GUVs. The change of the fluorescence intensity of the GUV rim, I, over time showed a two-step increase from a steady value, I1, to another, I2, concomitant with the entering of CF-PGLa into the lumen of the GUV prior to AF647 leakage. The simultaneous measurement of δ and I indicated that their time courses were virtually the same and the ratios (δ2/δ1 and I2/I1) were almost 2. These results indicated that CF-PGLa translocated across the bilayer before membrane permeation. Based on these results, the elementary processes of the PGLa-induced pore formation were discussed.  相似文献   

17.
Raft formation and enlargement was investigated in liposomes and supported bilayers prepared from sphingomyelin (SM), cholesterol, and unsaturated phospholipids; NBD-DPPE and rhodamine-(DOPE) were employed as fluorescent probes. Rafts were created by lowering temperature. Maintaining 20 mol % SM, fluorescence microscopy showed that, in the absence of photooxidation, large rafts did not form in giant unilamellar vesicles (GUVs) containing 20 or more mol % cholesterol. But if photooxidation was allowed to proceed, large rafts were readily observed. In population, cuvette experiments, small rafts formed without photooxidation at high cholesterol concentrations. Thus, photooxidation was the cause of raft enlargement during microscopy experiments. Because photooxidation results in peroxidation at lipid double bonds, photosensitization experiments were performed to explicitly produce peroxides of SM and an unsaturated phospholipid. GUVs of high cholesterol content containing the breakdown products of SM-peroxide, but not phospholipid-peroxide, resulted in large rafts after lowering temperature. In addition, GUV production by electroswelling can result in peroxides that cause large raft formation. The use of titanium electrodes eliminates this problem. In conclusion, lipid peroxides and their breakdown products are the cause of large raft formation in GUVs containing biological levels of cholesterol. It is critical that experiments investigating rafts in bilayer membranes avoid the production of peroxides.  相似文献   

18.
Tea catechins, which are flavonoids and the main components of green tea extracts, are thought to have antibacterial and antioxidant activity. Several studies indicate that lipid membranes are one of the targets of the antibacterial activity of catechins. Studies using a suspension of large unilamellar vesicles (LUVs) indicate that catechin causes gradual leakage of internal contents from LUVs. However, the detailed characteristics of the interaction of catechins with lipid membranes remain unclear. In this study, we investigated the interaction of (-)-epigallocatechin gallate (EGCg), a major catechin in tea extract, with single giant unilamellar vesicles (GUVs) of egg phosphatidylcholine (egg PC) using phase-contrast fluorescence microscopy and the single GUV method. We prepared GUVs of lipid membranes of egg PC in a physiological ion concentration ( approximately 150 mM NaCl) using the polyethylene glycol-lipid method. Low concentrations of EGCg at and above 30 muM induced rapid leakage of a fluorescent probe, calcein, from the inside of single egg PC-GUVs; after the leakage, the GUVs changed into small lumps of lipid membranes. On the other hand, phase-contrast microscopic images revealed the detailed process of the EGCg-induced burst of GUVs, the decrease in their diameter, and their transformation into small lumps. The dependence of the fraction of burst GUVs on EGCg concentration was almost the same as that of the fraction of leaked GUV. This correlation strongly indicates that the leakage of calcein from the inside to the outside of the GUV occurred as a result of the burst of the GUV. The fraction of completely leaked GUV and the fraction of the burst GUV increased with time and also increased with increasing EGCg concentration. We compared the EGCg-induced leakage from single GUVs with EGCg-induced leakage from a LUV suspension. The analysis of the EGCg-induced shape changes shows that the binding of EGCg to the external monolayer of the GUV increases its membrane area, inducing an increase in its surface pressure. Small angle x-ray scattering experiments indicate that the intermembrane distance of multilamellar vesicles of PC membrane greatly decreased at EGCg concentrations above the threshold, suggesting that neighboring membranes came in close contact with each other. On the basis of these results, we discuss the mechanism of the EGCg-induced bursting of vesicles.  相似文献   

19.
The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10–30 μm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions.  相似文献   

20.
The behavior of freestanding lipid bilayer membranes under the influence of dielectric force potentials was studied by trapping, holding, and rotating individual giant unilamellar vesicles (GUVs) inside dielectrophoretic microfield cages. Using laser scanning confocal microscopy and three-dimensional image reconstructions of GUVs labeled with fluorescent membrane probes, field strength and frequency-dependent vesicle deformations were observed which are explained by calculations of the dielectric force potentials inside the cage. Dynamical membrane properties under the influence of the field cage were studied by fluorescence correlation spectroscopy, circumventing potential artifacts associated with measurements involving GUV immobilization on support surfaces. Lipid transport could be accelerated markedly by the applied fields, aided by hydrodynamic fluid streaming which was also studied by fluorescence correlation spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号