首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Kim YC  Lee J  Koo HS 《Nucleic acids research》2000,28(9):2012-2017
To investigate the function of a DNA topoisomerase III enzyme in Caenorhabditis elegans, the full-length cDNA of C.elegans DNA topoisomerase IIIα was cloned. The deduced amino acid sequence exhibited identities of 48 and 39% with those of human DNA topoisomerase IIIα and Saccharomyces cerevisiae DNA topoisomerase III, respectively. The overexpressed polypeptide showed an optimal activity for removing negative DNA supercoils at a relatively high temperature of 52–57°C, which is similar to the optimum temperatures of other eukaryotic DNA topoisomerase III enzymes. When topoisomerase IIIα expression was interfered with by a cognate double-stranded RNA injection, pleiotropic phenotypes with abnormalities in germ cell proliferation, oogenesis and embryogenesis appeared. These phenotypes were well correlated with mRNA expression localized in the meiotic cells of gonad and early embryonic cells.  相似文献   

2.
Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.  相似文献   

3.
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.  相似文献   

4.
A genome project for the species Caenorhabditis elegans has demonstrated the presence of eight cDNAs belonging to the major intrinsic protein (MIP) family. We previously characterized one of these cDNAs known as C01G6.1. C01G6.1 was confirmed to be a water channel and newly designated as AQP-CE1 [Am. J. Physiol. 275 (1998) C1459-C1464]. In this paper, we examined the function of another MIP protein encoded by F40F9.9. This cDNA encodes a 274-amino acid protein showing a high sequence identity with mammalian aquaporin-8 (AQP8) water channel (35%) and d-TIP (34%), an AQP of Arabidopsis. The expression of F40F9.9 in Xenopus oocytes increased the osmotic water permeability (P(f)) 10.4-fold, and the activation energy for P(f) from Arrhenius plot was 4.7 kcal/mol, suggesting that F40F9.9 is a water channel (AQP-CE2). AQP-CE2 was not permeable to glycerol or urea. Oocyte P(f) was reversibly inhibited by 58% after an incubation with 0.3 mM HgCl(2). To identify the mercury-sensitive site, four individual cysteine residues in AQP-CE2 (at positions 47, 132, 149, 259) were altered to serine by site-directed mutagenesis. Of these mutants, only C132S had a P(f) similar to that of the wild-type together with an acquired mercury resistance, suggesting that Cys-132 is the mercury-sensitive site. Similar results were obtained by the mutation of Cys-132 to alanine (C132A). Replacement of Cys-132 with tryptophan decreased P(f) by 64%, but P(f) was still 2.5 times higher than that of the control. Cys-132 is located in the transmembrane helix 3, close to the transition to the extracellular loop C. These results suggest that the transmembrane helix 3, including Cys-132, might participate in the aqueous pore formation, or, alternatively, that Cys-132 might contribute to the construction of the AQP protein.  相似文献   

5.
A rat cytoplasmic aminopeptidase P was purified from liver cytosol with a procedure including an affinity elution step with 3 microM inositol 1,3,4-trisphosphate. Proteolytic fragments were generated, sequenced and the enzyme was cloned from a rat liver cDNA library. The structure shows high (87.8% and 95.5%, respectively) sequence identity at the nucleotide and amino acid levels with the previously described human putative cytoplasmic aminopeptidase P. The cloned rat enzyme was functionally expressed in Escherichia coli and also in COS-1 cells. Western blot analysis, using an antibody generated against the recombinant protein, and Northern blot hybridization showed ubiquitous expression of the protein in different tissues with the highest expression level in the testis.  相似文献   

6.
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.  相似文献   

7.
Recognition of the 5'-cap structure of mRNA by eIF4E is a critical step in the recruitment of most mRNAs to the ribosome. In Caenorhabditis elegans, approximately 70% of mRNAs contain an unusual 2,2,7-trimethylguanosine cap structure as a result of trans-splicing onto the 5' end of the pre-mRNA. The characterization of three eIF4E isoforms in C. elegans (IFE-1, IFE-2, and IFE-3) was reported previously. The present study describes two more eIF4E isoforms expressed in C. elegans, IFE-4 and IFE-5. We analyzed the requirement of each isoform for viability by RNA interference. IFE-3, the most closely related to mammalian eIF4E-1, binds only 7-methylguanosine caps and is essential for viability. In contrast, three closely related isoforms (IFE-1, IFE-2, and IFE-5) bind 2,2, 7-trimethylguanosine caps and are partially redundant, but at least one functional isoform is required for viability. IFE-4, which binds only 7-methylguanosine caps, is most closely related to an unusual eIF4E isoform found in plants (nCBP) and mammals (4E-HP) and is not essential for viability in any combination of IFE knockout. ife-2, ife-3, ife-4, and ife-5 mRNAs are themselves trans-spliced to SL1 spliced leaders. ife-1 mRNA is trans-spliced to an SL2 leader, indicating that its gene resides in a downstream position of an operon.  相似文献   

8.
Cytoplasmic dynein, a minus-end-directed microtubule motor, has been implicated in many cellular and developmental processes. Identification of specific cellular processes that rely directly on dynein would be facilitated by a means to induce specific and rapid inhibition of its function. We have identified conditional variants of a Caenorhabditis elegans dynein heavy chain (DHC-1) that lose function within a minute of a modest temperature upshift. Mutant embryos generated at elevated temperature show defects in centrosome separation, pronuclear migration, rotation of the centrosome/nucleus complex, bipolar spindle assembly, anaphase chromosome segregation, and cytokinesis. Our analyses of mutant embryos generated at permissive temperature and then upshifted quickly just before events of interest indicate that DHC-1 is required specifically for rotation of the centrosome/nucleus complex, for chromosome congression to a well ordered metaphase plate, and for timely initiation of anaphase. Our results do not support the view that DHC-1 is required for anaphase B separation of spindle poles and chromosomes. A P-loop mutation identified in two independent dominant temperature-sensitive alleles of dhc-1, when engineered into the DHC1 gene of Saccharomyces cerevisiae, conferred a dominant temperature-sensitive dynein loss-of-function phenotype. This suggests that temperature-sensitive mutations can be created for time-resolved function analyses of dyneins and perhaps other P-loop proteins in a variety of model systems.  相似文献   

9.
10.
Modern proteomics approaches include techniques to examine the expression, localization, modifications, and complex formation of proteins in cells. In order to address issues of protein function in vitro using classical biochemical and biophysical approaches, high-throughput methods of cloning the appropriate reading frames, and expressing and purifying proteins efficiently are an important goal of modern proteomics approaches. This process becomes more difficult as functional proteomics efforts focus on the proteins from higher organisms, since issues of correctly identifying intron-exon boundaries and efficiently expressing and solubilizing the (often) multi-domain proteins from higher eukaryotes are challenging. Recently, 12,000 open-reading-frame (ORF) sequences from Caenorhabditis elegans have become available for functional proteomics studies [Nat. Gen. 34 (2003) 35]. We have implemented a high-throughput screening procedure to express, purify, and analyze by mass spectrometry hexa-histidine-tagged C. elegans ORFs in Escherichia coli using metal affinity ZipTips. We find that over 65% of the expressed proteins are of the correct mass as analyzed by matrix-assisted laser desorption MS. Many of the remaining proteins indicated to be "incorrect" can be explained by high-throughput cloning or genome database annotation errors. This provides a general understanding of the expected error rates in such high-throughput cloning projects. The ZipTip purified proteins can be further analyzed under both native and denaturing conditions for functional proteomics efforts.  相似文献   

11.
GDP-dissociation inhibitors (GDIs) form one of the classes of regulatory proteins that modulate the cycling of the Ras superfamily of GTPases between active GTP-bound and inactive GDP-bound states. We report here the characterization of the Caenorhabditis elegans RhoGDI (CeRhoGDI) as part of our investigations into Rho-GTPase signalling pathways that are involved in nematode development. CeRhoGDI is a 23-kDa protein that is localized predominantly in the cytosol. CeRhoGDI interacts only with the lipid-modified forms of C. elegans Rho-GTPases, CeRhoA, CeRac1 and Cdc42Ce, in vitro and is able to solubilize the membrane-bound forms of these GTPases. CeRhoGDI recognizes the GTPases in both GTP- and GDP-bound forms; hence it inhibits both the guanine-nucleotide dissociation and GTP-hydrolysis activities. The inhibitory activity towards the GTP-bound GTPases is weak compared with that towards GDP-bound GTPases. CeRhoGDI is expressed throughout development and is highly expressed in marginal and vulval epithelial cells, in sperm cells and spicules. Taken together, our results suggest that CeRhoGDI may be involved in specific morphogenetic events mediated by the C. elegans Rho-GTPases.  相似文献   

12.
Two carbohydrate-binding proteins (subunit molecular masses, 32 and 16 kDa, respectively) were isolated for the first time from a nematode, Caenorhabditis elegans. They were specifically extracted with lactose and adsorbed on asialofetuin-Sepharose in the absence of a metal ion. Although these two proteins were co-eluted from a gel filtration column at a position corresponding to an apparent molecular size of 30 kDa under non-denaturing conditions, they could be separated by reversed-phase chromatography. The 32 kDa protein, the main component, was further characterized. Together with its solubility, saccharide specificity and metal independence, some other structural properties, including its amino acid composition, UV spectrum, and partial amino acid sequence, strongly suggested that the 32 kDa protein is a member of a class of soluble beta-galactoside-binding lectins which had previously been only found in vertebrates.  相似文献   

13.
Methylmalonyl-CoA epimerase (MCE) is an enzyme involved in the propionyl-CoA metabolism that is responsible for the degradation of branched amino acids and odd-chain fatty acids. This pathway typically functions in the reversible conversion of propionyl-CoA to succinyl-CoA. The Caenorhabditis elegans genome contains a single gene encoding MCE (mce-1) corresponding to a 15 kDa protein. This was expressed in Escherichia coli and the enzymatic activity was determined. Analysis of the protein expression pattern at both the tissue and subcellular level by microinjection of green fluorescent protein constructs revealed expression in the pharynx, hypodermis and, most prominently in body wall muscles. The subcellular pattern agrees with predictions of mitochondrial localization. The sequence similarity to an MCE of known structure was high enough to permit a three-dimensional model to be built, suggesting conservation of ligand and metal binding sites. Comparison with corresponding sequences from a variety of organisms shows more than 1/6 of the sequence is completely conserved. Mutants allelic to mce-1 showed no obvious phenotypic alterations, demonstrating that the enzyme is not essential for normal worm development under laboratory conditions. However, survival of the knockout mutants was altered when exposed to stress conditions, with mutants surprisingly showing an increased resistance to oxidative stress.  相似文献   

14.
The roundworm Caenorhabditis elegans adapted for survival at high concentrations of Cd(II) expresses two isoforms of metallothionein, CeMT-I and CeMT-II. To characterize one of these proteins CeMT-II was prepared as its Cd containing form by expressing its cDNA heterologously in Escherichia coli. The purified 63-amino-acid protein was identified as the desired product by ion-spray mass spectrometry and was found to resemble in most of its chemical and spectroscopic features the metallothioneins of other animal phyla. The recombinant protein contains a total of 18 cysteine residues and, as documented by electrophoresis and mass spectrometry, binds firmly six Cd ions through the cysteine's side chains. The (113)Cd NMR spectrum features six (113)Cd resonances. Their chemical shift positions between 615 and 675 ppm denote the existence of clusters of tetrahedrally coordinated cadmium thiolate complexes. The metal thiolate coordination dominates also the electronic far-UV absorption spectrum. It is characterized by a massive absorption profile with Cd thiolate shoulders at 255 and 235 nm. Upon replacement of Cd by Zn the profile was blue-shifted by 30 nm.  相似文献   

15.
Functional analysis of kinetochore assembly in Caenorhabditis elegans   总被引:7,自引:0,他引:7  
In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical "kinetochore null" phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A-containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.  相似文献   

16.
Here, we report the identification, cloning, and functional characterization of three Caenorhabditis elegans G protein-coupled pigment dispersing factor (PDF) receptors, which we designated as Ce_PDFR-1a, -b, and -c. They represent three splice isoforms of the same gene (C13B9.4), which share a high degree of similarity with the Drosophila PDF receptor and are distantly related to the mammalian vasoactive intestinal peptide receptors (VPAC2) and calcitonin receptors. In a reverse pharmacological screen, three bioactive C. elegans neuropeptides, which were recently identified as the Drosophila PDF orthologues, were able to activate these receptors in a dose-dependent manner with nanomolar potency (isoforms a and b). Integrated green fluorescent protein reporter constructs reveal the expression of these PDF receptors in all body wall muscle cells and many head and tail neurons involved in the integration of environmental stimuli and the control of locomotion. Using a custom data analysis system, we demonstrate the involvement of this newly discovered neuropeptide signaling system in the regulation of locomotor behavior. Overexpression of PDF-2 phenocopies the locomotor defects of a PDF-1 null mutant, suggesting that they elicit opposite effects on locomotion through the identified PDF receptors. Our findings strengthen the hypothesis that the PDF signaling system, which imposes the circadian clock rhythm on behavior in Drosophila, has been functionally conserved throughout the protostomian evolutionary lineage.  相似文献   

17.
Thioredoxins are a class of evolutionarily conserved proteins that have been demonstrated to play a key role in many cellular processes involving redox reactions. We report here the genetic and biochemical characterization of Caenorhabditis elegans TRX-3, the first metazoan thioredoxin with an intestine-specific expression pattern. By using green fluorescent protein reporters we have found that TRX-3 is expressed in both the cytoplasm and the nucleus of intestinal cells, with a prominent localization at the apical membrane. Although intestinal function, reproductive capacity, longevity, and resistance of trx-3 loss-of-function mutants to many stresses are indistinguishable from those of wild-type animals, we have observed a slight reduction in size and a minor reduction in the defecation cycle timing of trx-3 mutants. Interestingly, trx-3 is induced upon infection by Photorhabdus luminescens and Candida albicans, and TRX-3 overexpression provides a modest protection against these pathogens. Together, our data indicate that TRX-3 function in the intestine is dispensable for C. elegans development but may be important to fight specific bacterial and fungal infections.  相似文献   

18.
Mutations of the puromycin-sensitive aminopeptidase (Psa) orthologs of flies, mice, and plants result in meiotic errors and reduced embryonic viability. Genetic lesions of the Caenorhabditis elegans ortholog of Psa, pam-1, similarly result in dramatic reductions of worm fecundity. The gonads of animals harboring mutant pam-1 alleles display expanded populations of pachytene germinal nuclei and delayed nucleolar disassembly in the developing oocytes, phenotypes that ultimately hinder embryonic viability and overall brood sizes. PAM-1 is a member of the M1 aminopeptidase family and shares a high amount of homology with its M1 paralogs. Comparative analysis of the M1 aminopeptidase family reveals that only nine (including PAM-1) of the 17 annotated M1 aminopeptidases are predicted to be catalytically active. Interestingly, we demonstrate that three of these active M1 paralogs have roles independent of PAM-1 in promoting gametogenesis and fecundity. Simultaneous inhibition of pam-1 and M1 paralogs produces synergistic decreases in overall brood sizes and embryonic viability, exacerbates the germinal phenotypes of pachytene extension and delayed nucleolar disassembly, and unmasks previously hidden phenotypes. Our data suggests that the interdependent functions of multiple M1 aminopeptidases are necessary for reproductive success in C. elegans and lend further credence to the redundant composition of an evolutionarily conserved enzyme family.  相似文献   

19.
A cDNA (LeAPP2) was cloned from tomato coding for a 654 amino acid protein of 72.7 kDa. The deduced amino acid sequence was >40% identical with that of mammalian aminopeptidase P, a metalloexopeptidase. All amino acids reported to be important for binding of the active site metals and catalytic activity, respectively, were conserved between LeAPP2 and its mammalian homologues. LeAPP2 was expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase and was purified from bacterial extracts. LeAPP2 was verified as an aminopeptidase P, hydrolyzing the amino-terminal Xaa-Pro bonds of bradykinin and substance P. LeAPP2 also exhibited endoproteolytic activity cleaving, albeit at a reduced rate, the internal -Phe-Gly bond of substance P. Apparent K(m) (15.2 +/- 2.4 microm) and K(m)/k(cat) (0.94 +/- 0.11 mm(-1) x s(-1)) values were obtained for H-Lys(Abz)-Pro-Pro-pNA as the substrate. LeAPP2 activity was maximally stimulated by addition of 4 mm MnCl(2) and to some extent also by Mg(2+), Ca(2+), and Co(2+), whereas other divalent metal ions (Cu(2+), Zn(2+)) were inhibitory. Chelating agents and thiol-modifying reagents inhibited the enzyme. The data are consistent with LeAPP2 being a Mn(II)-dependent metalloprotease. This is the first characterization of a plant aminopeptidase P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号